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This paper is concerned with derivation of a complete Hamiltonian and its rovibronic part
containing no anomalous (singular) coefficients like Iα/2(Iβ−Iγ )2 by the square components
of the orbital angular momentum for an N-particle system. The work consists of two parts. In
the first part the reasons for appearance of the anomalies (in earlier papers [1,2] as well as in
more recent ones [4–9]) are analyzed and a general procedure of removing the singularities is
proposed through the correct consideration of both determination of the angular momentum
and mutual displacements of the particles. The complete description of transition from labo-
ratory variables to molecular ones including non-holonomic coordinates is presented. In the
second part the explicit expressions of the Hamiltonians are obtained through the use of tensor
methods. The first of them is as follows:
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∑
α

1

Iα
Wα

1 Lα

− ih̄
∑
k

Wk
2 pk + U.

Here Pα , Lα , pk are the components of the total momentum, the angular momentum and
momenta of internal motion.

KEY WORDS: complete and rovibronic Hamiltonians, laboratory and molecular infinitesi-
mal variables, dynamic and deformation rotations of the principal axes, fundamental tensors,
coefficients of connectedness, object of anholonomity, Jacobians of transformations

1. Introduction

Even in the first papers [1,2] dedicated to the successive derivation of the kinetic
energy operator for polyatomic molecules (N-particle systems) in the principal central
moving axes, the coefficients by the square of components of the angular momentum
having the form

Iα

2(Iβ − Iγ )2
(1)
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were obtained unlike the commonly used 1/2Iα , (α, β, γ ) – cyclic permutation (x, y, z).
In [3], which initiated speculation (1), Van Vleck upheld the validity of the formula

Hrot =
∑
α

(Pα − ζα)
2

2Iα
, α = x, y, z, (2)

for the rotational part of the kinetic energy operator; here Pα–components of the total
angular momentum with respect to the principal axes, ζα – components of vibrational
angular momentum. To prove impossibility of appearance of anomalous expressions (1)
he considered a simple hypothetical two-dimensional system with a special set of vari-
ables. Selecting perturbation and using the second order perturbation theory Van Vleck
[3] showed that the appearance of expressions like (1) could be avoided in this model
problem. Discussion of more realistic three-dimensional problems considered in [1,2]
was qualitative in nature and as to precise calculations Van Vleck [3] noticed:

This calculation might not be easy to make explicitly, due to the clumsy, unsymmet-
rical nature of the coordinates, but can only lead to (2), at least when the moments of
inertia are unequal, since we have proved by means of Eckart’s coordinates that (2)
then is inevitable.

Hence in [3] the possibility of avoiding singularities (1) in the rotational part of the ki-
netic energy operator was shown, but there was no successive derivation of the molecular
Hamiltonian in the principal central axes (PCA) without such singularities.

Meanwhile, the (PCA) as a moving frame are widely used in the nuclear theory.
The total description and references can be found in [4,5]. Extended and consequtive ex-
amination of introducing these axes as well as of using them in the theory of molecules is
presented in [6]. The papers [7–9] should be mentioned as those wherein the successive
derivation of the molecular Hamiltonians in the PCA of inertia was performed. To our
opinion the most surprising general result of [4–9] is that the rotational part of all Hamil-
tonians contains singularities (1) like in [1,2]. Stability of appearance of the anomalous
expressions in the works of different authors testifies to the fact that a general important
factor leading to the anomaly is not taken into account. The analysis made leads us to
conclude that this factor is the existence of two different reasons for rotation of PCA of
a system of particles interacting by means of force fields and having no rigid constraints
with respect to the laboratory frame of reference. One of these rotations (let us call it
“dynamics”) is completely determined by the angular momentum. The other one has no
connection with the angular momentum, but it is connected with redistribution of mass
in the system (“additional” or “deformation” rotation). If these rotations are separated
exactly (accurately) then the anomalous expressions (1) do not arise in derivation of the
Hamiltonian that is shown below.

In fact there are two parts in this paper. In the first one (sections 2–6) equations
of transformations which connect the laboratory and the moving frames of reference
are obtained through the well-known method in mechanics [10] – that of infinitesimal
variables. In the second part (sections 7–11) the Hamiltonian is derived by using tensor
methods.
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2. Preliminaries

2.1. The system of particles. The systems of reference

A molecule is considered to be a system of N kinematically unrelated particles
without explicit separation of electrons and nuclei. Two right-handed Cartesian coor-
dinate system are introduced: a laboratory one (inertial, fixed) and a molecular one
(noninertial, moving). Each system is defined by the origin and the frame of vectors:(

O;�i∗, �j∗, �k∗
)
,

(
Oc;�i, �j , �k ) (3)

for the laboratory and the molecular system, respectively. Here Oc is the center of mass
of the molecule. The following aggregates of indices denoting

– numbers of the particles: τ, η, µ = 1, 2, . . . , 3N ,

– projections on the moving axes: α, β, γ = x, y, z,

– numbers of internal (see below) variables: j, k, l = 1, 2, . . . , 3N − 6,

are used.
In the laboratory and the molecular systems a configuration of the molecule is

defined by the sets of radius-vectors{
O; �rτ

∗
}N

1 ,
{
Oc; �rτ

}N

1 , (4)

respectively.
It is evident that

�rτ
∗ = �Rc + �rτ , �Rc = 1

M

∑
τ

mτ �rτ
∗ , M =

∑
τ

mτ , (5)

where mτ – mass of τ th particle.
Projections on the moving axis OcX are

rτx
∗ = �rτ

∗ · �i, rτx = �rτ · �i. (6)

For the other moving axes formulae are analogous.
The condition of the center of mass of the system of the particles and conditions of

the axes being principal have form∑
τ

mτ �rτ = 0;
∑
τ

mτ r
ταrτβ = 0, α 	= β. (7)

2.2. Operators of projections of orbital angular momentum on the moving axes

Eulerian angles ϕ, θ, χ and operators of projections of the orbital angular momen-
tum Lα (α = x, y, z) on the moving axes are defined in the same way as in [11],
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Lx =−ih̄

[
−cos χ

sin θ

∂

∂ϕ
+ sin χ

∂

∂θ
+ cot θ cos χ

∂

∂χ

]
,

Ly =−ih̄

[
sin χ

sin θ

∂

∂ϕ
+ cos χ

∂

∂θ
− cot θ sin χ

∂

∂χ

]
, (8)

Lz=−ih̄
∂

∂χ
.

The same expression can be found in [4, Vol. 1] and in [12]. Respective projections of
angular velocity on the moving axes are as follows:

ωx =−ϕ̇ sin θ cos χ + θ̇ sin χ,

ωy = ϕ̇ sin θ sin χ + θ̇ cos χ, (9)

ωz= ϕ̇ cos θ + χ̇ .

In analytical mechanics the values ωα (α = x, y, z) are treated as quasi-velocities [13].
Multiplication (9) by the element of time dt leads to the values called differentials of
quasi-coordinates [13]

dω̃ x =− sin θ cos χ dϕ + sin χ dθ,

dω̃ y = sin θ sin χ dϕ + cos χ dθ, (10)

dω̃ z= cos θ dϕ + dχ,

although there are no generalized coordinates in terms of Lagrange which satisfy (10).
In [14] more convenient term for these values is used – non-holonomic components of
an object or non-holonomic (infinitesimal) coordinates. We will follow this term for

dω̃ α = ωα dt, α = x, y, z. (11)

Using (8) and (10) it can be shown [15], that operators of projections of the orbital
angular momentum on the moving axes (8) have the form

Lα = −ih̄
∂

∂ω̃ α
, α = x, y, z. (12)

3. Infinitesimal stages and independent variables

Motion of the system of the particles is considered to be a sequence of infinitesimal
stages with duration of dt . Each stage is limited to the initial and to the final configu-
ration of the particles, these configurations having their PCA. The continuity conditions
of the particles are valid:

– the initial configuration of a stage is the final one for the previous stage, the final
configuration of a stage is the initial one for the subsequent stage;

– the PCA of the initial configuration are transformed to the analogous ones of the
final configuration.

The initial configurations are represented in (4).
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3.1. Infinitesimal independent variables

In the laboratory frame of reference these variables are a set of infinitesimal
changes in the radius-vectors of the particles:{

d�rτ
∗
}N

1 ≡
{
drτx
∗ , drτy

∗ , drτz
∗
}N

1 ,

while making transition from the initial configuration (4) to the final one{
O; �rτ

∗ + d�rτ
∗
}N

1 . (13)

In the moving frame of reference the infinitesimal variables are classified into three
groups:

– the changes in the radius-vectors of the center of mass (5)

d �Rc = 1

M

∑
τ

mτ d�rτ
∗ , dRα

c =
1

M

∑
τ

mτ drτα
∗ , α = x, y, z, (14)

while making transition from the initial configuration to the final one;

– the differentials dξ j (j = 1, 2, . . . , 3N − 6) of the internal molecular variables
ξ j which are invariant with respect to translations and rotations, these variables
define mutual location of the particles of a molecule;

– the non-holonomic rotations (11){
dω̃ x, dω̃ y, dω̃ z

} ≡ d �̃ω,

which transform the PCA of the initial configuration to the analogous axes of
the final one. As this takes place, dω̃ α must comply with the definition (12), i.e.,
include only dynamic rotation of the axes. It is the operation that is essential for
eliminating the singularities (1) and it will be considered later.

As the laboratory variables are independent, the following equalities take place

∂rτα∗
∂r

ηβ
∗
= δτ

ηδ
α
β ; τ, η = 1, 2, . . . , N; α, β = x, y, z (15)

(δτ
η , δ

α
β – Kronecker symbols), and for the molecular variables in different groups we

have

∂Rα
c

∂R
β
c

= δα
β ,

∂ω̃α

∂ω̃β
= δα

β ,
∂ξ j

∂ξ k
= δ

j

k . (16)

Derivatives of coordinates from different groups are equal to zero.
It is convenient to write general relations among the laboratory and the molecular

variables in the form

dRα
c =

∑
τ

∑
β

ARα
τβ drτβ

∗ , dω̃α =
∑
τ

∑
β

Aωα
τβ drτβ

∗ , dξ j =
∑
τ

∑
β

A
j

τβ drτβ
∗ ,

(17)
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drτα
∗ =

∑
β

Bτα
Rβ dRβ

c +
∑
β

Bτα
ωβ dω̃ β +

∑
k

Bτα
k dξ k. (18)

The coefficients from (17), (18) are determined later. Hereafter only the infinitesimal
variables are used and the term “infinitesimal” is often omitted if its usage is clear.

4. Transition to the final configuration in the moving axes

In the laboratory and the moving frames of reference the initial configurations are
represented in (4), and the final configuration (13) is in the laboratory frame of reference.

The theorem of motion addition is represented as

d�rτ
∗ = d �Rc + d �̃ω × �rτ + d�rτ , d�rτ =

∑
k

�Cτ
k dξ k (19)

and it follows from the theorem of velocity addition in relative motion [10,13]

�V τ
∗ = �Vc + �ω × �rτ + �V τ ,

where �V τ∗ , �V τ – the velocities of the τ th particle with respect to the laboratory and the
moving frames of reference, respectively. From this it is inferred that the final configu-
ration has the form {

Oc
f ; �rτ

f

}N

1 =
{
Oc

f ; �rτ + d �̃ω × �rτ + d�rτ
}N

1 (20)

in the moving frames of reference. In so doing the axes
(
Oc;�i, �j, �k ), (3), are shifted to

d �Rc and rotated on d �̃ω, are transformed to(
Oc

f ;�if , �jf , �kf

) = (
Oc

f ;�i + d �̃ω ×�i, �j + d �̃ω × �j, �k + d �̃ω × �k), (21)

which are the central ones. But, generally speaking, they are not the principal ones for
the final configuration (20). Making an additional rotation (21) on

−→
d2, we obtain the

final modified axes(
Oc

f ;�ifm, �jfm, �kfm

) = (
Oc

f ;�if +−→d2×�if , �jf +−→d2× �jf , �kf +−→d2× �kf

)
. (22)

Like (21) they are central, and they can be transformed to the principal axes for the final
configuration, if the following equalities (analogous to (7)) are satisfied∑

τ

mτ

(�rτ
f · �ifm

)(�rτ
f · �jfm

) = 0,
∑
τ

mτ

(�rτ
f · �jfm

)(�rτ
f · �kfm

) = 0,∑
τ

mτ

(�rτ
f · �kfm

)(�rτ
f · �ifm

) = 0.

Substituting corresponding expressions from (20)–(22) and restricting oneself to infini-
tesimal quantities up to the second order we obtain

d2α = − 1

Iβ − Iγ

∑
τ

mτ

(
rτβ drτγ + rτγ drτβ

)
, (23)
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here the set of indices (α, β, γ ) is a cyclic permutation of (x, y, z). Taking into account
the second equality from (19) one can see that d2α depends only on mutual displace-
ments of the particles dξ j , j = 1, 2, . . . , 3N − 6, and does not depend on d �Rc and d �̃ω.

Thus the additional rotation of the axes (21) on the angle
−→
d2 (additional, deforma-

tion rotation) makes them the PCA (22) of the final configuration (20). This transition
is a “passive” form of transformation (alias) [12]. It can be replaced with “active” form
(alibi) by rotating the configuration (20) on the angle (−−→d2) without changing the axes
(21). Limiting oneself to infinitesimal quantities of the first order this leads to the modi-
fied final configuration{

Oc
f ; �rτ

fm

}N

1 =
{
Oc

f ; �rτ + d �̃ω × �rτ + d�rτ −−→d2× �rτ
}N

1 , (24)

for which the axes (21) are PCA. In so doing the theorem of motion addition (19) is also
modified and has the form

d�rτ
∗ = d �Rc + d �̃ω × �rτ + d�rτ −−→d2× �rτ . (25)

It is the two latter equalities that are the basis for further transformations. But the
dynamic rotation d �̃ω is not determined yet, and presence of

−→
d2 is, in accordance with

(23) the source of singularities (1). Let us consider these questions.

5. Determination and refinement of rotations

In (25) we make the following transformations: d �Rc is carried over to the left side,
then vector product of mτ �rτ and both sides of the equalities is calculated and, finally,
sum over τ is performed. This leads to∑

τ

mτ �rτ × (
d�rτ
∗ − d �Rc

) =∑
τ

mτ �rτ × (
d �̃ω×�rτ

)+∑
τ

mτ �rτ × (
d�rτ −−→d2×�rτ

)
. (26)

Dividing both sides of (26) by dt we have

∑
τ

mτ �rτ×
(

d�rτ∗
dt
− d �Rc

dt

)
=

∑
τ

mτ �rτ×( �ω×�rτ
)+∑

τ

mτ �rτ×
(

d�rτ

dt
−
−→
d2

dt
×�rτ

)
, (27)

(11) being taken into account. The left side expression is the classical orbital angular
momentum of N-particle system with respect to the center of mass Oc of this system
[10,13]. In the right side the second sum depends only on velocities of relative motion
dξ j /dt (see the second addend in (19) and a remark in connection with (23)). Therefore,
the orbital angular momentum of the system of particles has to be completely determined
with the angular velocities �ω in the first addend in the right side (27), i.e.,∑

τ

mτ �rτ ×
(

d�rτ∗
dt
− d �Rc

dt

)
=

∑
τ

mτ �rτ × ( �ω × �rτ
)
.
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Multiplying both sides by dt , we obtain an equation for determination of the dynamic
rotation d �̃ω ∑

τ

mτ �rτ × (
d�rτ
∗ − d �Rc

) =∑
τ

mτ �rτ × (
d �̃ω × �rτ

)
. (28)

After substituting it in (26), one obtains an equation for refinement of the rotation
−→
d2∑

τ

mτ �rτ × d�rτ =
∑
τ

mτ �rτ × (−→
d2× �rτ

)
. (29)

5.1. Expressions of components of the dynamic rotation in the moving frame of
reference

If one takes into consideration the first equality from (7) then∑
τ

mτ �rτ × d �Rc =
(∑

τ

mτ �rτ

)
× 1

M

∑
η

mη d�rη
∗ = 0,

and (28) can be rewritten in the form∑
τ

mτ �rτ × d�rτ
∗ =

∑
τ

mτ �rτ × (
d �̃ω × �rτ

)
. (30)

By using the formula of double vector product [16], we obtain∑
τ

mτ �rτ × d�rτ
∗ =

∑
τ

mτ

[
d �̃ω( �rτ · �rτ

)− �rτ
( �rτ · d �̃ω)].

Going to the projections on the PCA of the initial configuration Oc;�i, �j, �k (see (3)) and
taking into account (7), we have∑

τ

mτ

( �rτ × d�rτ
∗
)α = dω̃ α

∑
τ

mτ

[(
rτ
)2 − (

rτα
)2]

.

As the principal moments of inertia of the initial configuration of the particles are

Iα =
∑
τ

mτ

[(
rτ
)2 − (

rτα
)2]

, α = x, y, z, (31)

then the final expressions of the components of the dynamic rotation are as follows

d�ω α = 1

Iα
·
∑
τ

mτ

( �rτ ×d�rτ
∗
)α = 1

Iα

∑
τ

mτ

∑
β

∑
γ

εαβγ r
τβ drτγ

∗ , α = x, y, z, (32)

here εαβγ – the symbol of Levi–Civita [16]. In what follows Iα is defined by (31).
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5.2. The second variant of the additional rotation of the axes and theorems of motion
addition

The first variant is (23), the second one is obtained from (29). If (29) and (30) are
compared, then it is clear that the former is obtained from the latter with substitutions
d�ω → −→d2 and d�rτ∗ → d�rτ . Therefore, making these substitutions we have the second
variant of the additional rotation

d2α = 1

Iα
·
∑
τ

mτ

( �rτ ×d�rτ
)α = 1

Iα

∑
τ

mτ

∑
β

∑
γ

εαβγ r
τβ drτγ , α = x, y, z. (33)

This expression like (32) contains no the singularities that allows one to derive a hamil-
tonian without anomalous expressions (1) in the rotational part of the kinetic energy
operator. It is these expressions that are used thereafter. Turning to the modified theo-
rem of motion addition (25) and denoting

d �Rτ = d�rτ −−→d2× �rτ , (34)

we obtain

d�rτ
∗ = d �Rc + d �̃ω × �rτ + d �Rτ , drτα

∗ = dRα
c +

(
d �̃ω × �rτ

)α + dRτα, (35)

τ = 1, 2, . . . , N; α = x, y, z.

The final modified configuration (24) is{
Oc

f ; �rτ
fm

}N

1 =
{
Oc

f ; �rτ + d �̃ω × �rτ + d �Rτ
}
.

Rewriting (34) as

dRτα = drτα − (
d2βrτγ − d2γ rτβ

)
,

and taking into consideration (33) and the second equality from (19) we have after the
transformation

dRτα =
∑
k

{∑
η

(
δτ
η − rτβ mη

Iγ
rηβ − rτγ mη

Iβ
rηγ

)
C

ηα

k

+
∑
η

(
rτβ mη

Iγ
rηα

)
C

ηβ

k +
∑
η

(
rτγ mη

Iβ
rηα

)
C

ηγ

k

}
dξ k, (36)

τ = 1, 2, . . . , N ; α = x, y, z; (α, β, γ ) is a cyclic permutation of (x, y, z). One can
see that dRτα is a function of the internal variables dξ k (k = 1, 2, . . . , 3N − 6), and
comparison of (35) with (18) leads to

dRτα =
∑
k

Bτα
k dξ k. (37)
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Correlating (36) with (37) and taking into consideration the fact that dξk are independent,
we have

Bτα
k =

∑
η

(
δτ
η − rτβ mη

Iγ
rηβ − rτγ mη

Iβ
rηγ

)
C

ηα

k

+
∑
η

(
rτβ mη

Iγ
rηα

)
C

ηβ

k +
∑
η

(
rτγ mη

Iβ
rηα

)
C

ηγ

k , (38)

k = 1, 2, . . . , 3N − 6; τ = 1, 2, . . . , N ; α = x, y, z; (α, β, γ ) is a cyclic permutation of
(x, y, z). Now the modified theorem of motion addition (35) has the form

drτα
∗ = dRα

c +
∑
β

∑
γ

εαβγ dω̃ βrτγ +
∑
k

Bτα
k dξ k, τ = 1, 2, . . . , N; α = x, y, z.

(39)

6. Coefficients of transformations and conditions being satisfied by them

The coefficients of transformations (17) are found from definitions both (14), (32)

ARα
τβ =

mτ

M
δα
β, M =

∑
η

mη; Aωα
τβ =

1

Iα

∑
γ

εαγβr
τγ (40)

and definition of dξ k as a differential of a function ξ j = ξ j (r
τγ
∗ ), i.e.,

Aj
τα =

∂ξ j

∂rτα∗
. (41)

Two types of transformation coefficients (18) are evaluated through comparing with (39)

Bτα
Rβ = δα

β , Bτα
ωβ =

∑
γ

εαγβr
τγ , (42)

and another one is written similarly to (41)

Bτα
k =

∂rτα∗
∂ξk

.

But it is impossible to use the latter equality for determination of Bτα
k , because depen-

dence of rτα∗ on ξ k is unknown. Therefore, we use the fact that the laboratory variables
(15) are independent and the well-known formula for derivatives [17]

∂rτα∗
∂r

ηβ
∗
=

∑
γ

∂rτα∗
∂R

γ
c

∂R
γ
c

∂r
ηβ
∗
+
∑
γ

∂rτα∗
∂ω̃γ

∂ω̃γ

∂r
ηβ
∗
+
∑
γ

∂rτα∗
∂ξk

∂ξ k

∂r
ηβ
∗

.
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If one replaces the derivatives with corresponding transformation coefficients (17), (18)
in the right side and compares newly obtained equality with (15), then the following
equation takes place∑

γ

Bτα
RγA

Rγ

ηβ +
∑
γ

Bτα
ωγA

ωγ

ηβ +
∑
k

Bτα
k Ak

ηβ = δτ
ηδ

α
β . (43)

After substituting (40) and (42) in this equation we have a formula which determines the
third sum in the left side. It is convenient to rewrite it as two equalities:

• if in (43) α = β then∑
k

Bτα
k Ak

ηα = δτ
η −

mη

M
−mη

[
rτβrηβ

Iγ
+ rτγ rηγ

Iβ

]
; (44)

• if in (43) α 	= β then ∑
k

Bτα
k Ak

ηβ = mη

rτβrηα

Iγ
. (45)

In (43), (45) (α, β, γ ) can be considered as the cyclic permutation (x, y, z), though it is
possible to use conditions α 	= β, β 	= γ , γ 	= α; α, β, γ = x, y, z in this case.

Let us introduce

Gjk =
∑
τ

m−1
τ

∑
α

Aj
ταA

k
τα =

∑
τ

m−1
τ
�Aj
τ · �Ak

τ , (46)

Gkl =
∑
η

mτ

∑
α

B
τβ

k B
τβ

l =
∑
η

mη
�Bτ
k · �Bτ

l . (47)

It is clear that Gjk = Gkj , Gkl = Glk. Using (44), (45) one can show that (46), (47)
satisfy the relationships∑

k

GjkG
kl = δl

j ; j, l = 1, 2, . . . , 3N − 6, (48)

B
ηα

j = m−1
η

∑
k

GjkA
k
ηα; η = 1, 2, . . . , N; α = x, y, z, (49)

Aj
τα = mτ

∑
k

GjkBτα
k ; τ = 1, 2, . . . , N; α = x, y, z. (50)

The equality (48) shows that the values (46), (47) are reciprocal; (49), (50) allow one to
represent Bηα

i as functions of Ak
ηα and vice versa. The way of determination of B

ηα

j from
(18) is as follows:

– if Aj
τα are known from (41), then Gjk are found from (46);

– (48) defines Gjk;

– in accordance with (49) B
ηα

k are determined;

– (50) enables one to check precision of determination of B
ηα

j .
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Thus determination of coefficients transformations (17), (18) is completed. But
the coefficients Cτα

k (the second equality in (19)) are not determined yet. To solve this
problem the equalities (38) which for every fixed k = 1, 2, . . . , 3N − 6 are convenient
to write in the form

∑
η

(
δτ
η − rτy mη

Iz
rηy − rτzmη

Iy
rηz

)
C

ηx

k +
(
rτy mη

Iz
rηx

)
C

ηy

k

+
∑
η

(
rτz mη

Iy
rηx

)
C

ηz

k = Bτx
k , τ = 1, 2, . . . , N;

∑
η

(
rτx mη

Iz
rηy

)
C

ηx

k +
∑
η

(
δτ
η − rτzmη

Ix
rηz − rτx mη

Iz
rηx

)
C

ηy

k

+
∑
η

(
rτz mη

Ix
rηy

)
C

ηz

k = B
τy

k , τ = 1, 2, . . . , N;

∑
η

(
rτx mη

Iy
rηz

)
C

ηx

k +
∑
η

(
rτy mη

Ix
rηz

)
C

ηy

k

+
∑
η

(
δτ
η − rτx mη

Iy
rηx − rτy mη

Ix
rηy

)
C

ηz

k = Bτz
k , τ = 1, 2, . . . , N

are used. By correlating the system coefficients with (44), (45) we obtain the final system
of equalities for determination of C

ηα

k by means of the coefficients of transformations
(17), (18)

∑
η

(∑
j

Bτx
j Aj

ηx +
mη

M

)
C

ηx

k +
∑
η

(∑
j

Bτx
j Aj

ηy

)
C

ηy

k +
∑
η

(∑
j

Bτx
j Aj

ηz

)
C

ηz

k = Bτx
k ,

τ = 1, 2, . . . , N;∑
η

(∑
j

B
τy

j Aj
ηx

)
C

ηx

k +
∑
η

(∑
j

B
τy

j Aj
ηy +

mη

M

)
C

ηy

k +
∑
η

(∑
j

B
τy

j Aj
ηz

)
C

ηz

k = B
τy

k ,

τ = 1, 2, . . . , N; (51)∑
η

(∑
j

Bτz
j Aj

ηx

)
C

ηx

k +
∑
η

(∑
j

Bτz
j Aj

ηy

)
C

ηy

k +
∑
η

(∑
j

Bτz
j Aj

ηz +
mη

M

)
C

ηz

k = Bτz
k ,

τ = 1, 2, . . . , N,

for every fixed k = 1, 2, . . . , 3N−6. Methods of solving such systems of equations can
be found in [18,19]. In conclusion of this section we write out additional relationships
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(omitting proof) wherein the coefficients of transformations (17), (18) are included. In
so doing the starting point is (16) as well.∑

τ

�Aj
τ = 0, i.e.,

∑
τ

Aj
τα = 0,∑

τ

(�rτ × �Aj
τ

) = 0, i.e.,
∑
τ

(�rτ × �Aj
τ

)α = 0,∑
τ

mτ
�Bj
τ = 0, i.e.,

∑
τ

mτB
τα
j = 0,∑

τ

mτ

(�rτ × �Bτ
j

) = 0, i.e.,
∑
τ

mτ

(�rτ × �Bτ
j

)α = 0,

(52)

∑
τ

�Aj
τ · �Bτ

k =
∑
τ

∑
α

Aj
ταB

τα
k = δ

j

k .

There are equalities, part of them was obtained in the previous sections:

d �Rτ =
∑
k

�Bτ
k dξ k,

∑
τ

mτ d �Rτ = 0,
∑
τ

mτ

(�rτ × d �Rτ
) = 0,

d�rτ =
∑
k

�Cτ
k dξ k,

∑
τ

mτ d�rτ = 0,
∑
τ

mτ
�Cτ
k = 0,∑

τ

�Aj
τ · �Cτ

k = δ
j

k .

(53)

It should be noted that the next to last equality in (53) allows one to omit the addend
mτ/M in parentheses of the equation (51). This enables us to rewrite these equations in
a compact form∑

η

∑
γ

(∑
j

Bτα
j Aj

ηγ

)
C

ηγ

k = Bτα
k , τ = 1, 2, . . . , N, α = x, y, z; (54)

for every k = 1, 2, . . . , 3N − 6.

7. Operators of the kinetic energy in Cartesian and generalized coordinates

Let us introduce projections of radius vectors of the particles in the laboratory
system �rτ∗ (4), (5) on these axes (3) (the first expression)

rτx
∗∗ = �rτ

∗ · �i∗, rτy
∗∗ = �rτ

∗ · �j∗, rτz
∗∗ = �rτ

∗ · �k∗. (55)

These projections are different from those of these vectors on axes of the moving sys-
tem (3) (the second expression)

rτx
∗ = �rτ

∗ · �i, rτy
∗ = �rτ

∗ · �j , rτz
∗ = �rτ

∗ · �k, (56)

which are used (6) in the first part of the paper.
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In the laboratory axes the kinetic energy operator acting on an absolute scalar – a
wavefunction ψ – has the form

Tψ = − h̄2

2

∑
τ

m−1
τ

∑
α

∂

∂rτα∗∗

∂

∂rτα∗∗
ψ. (57)

By analogy with (55), (56) mass-weighted Cartesian coordinates are introduced

ρτx∗∗ = m1/2
τ �rτ∗ · �i∗ = m1/2

τ rτx∗∗ , etc.,
ρτx∗ = m1/2

τ �rτ∗ · �i = m1/2
τ rτx∗ , etc.

(58)

Then (57) is

T ψ = − h̄2

2

∑
τ

∑
α

∂

∂ρτα∗∗

∂

∂ρτα∗∗
ψ. (59)

When the common factor (−h̄2/2) is not considered then the rest of (59) is multiparticle
Laplacian – the sum of three-dimensional operators∑

α

∂

∂ρτα∗∗

∂

∂ρτα∗∗
ψ, τ = 1, 2, . . . , N,

acting on ψ . As was shown in [20, chapter 1], the form of Laplacian is invariant with
respect to transition from one Cartesian coordinate system to another, (i.e., from the first
system in (3) to the second one) since

div grad ψ = ∇2ψ = 1

h1h2h3

3∑
n=1

∂

∂ζn

[
h1h2h3

h2
n

∂ψ

∂ζn

]
,

all Lamé coefficients hn = 1. Therefore, (59) can be rewritten as the multiparticle
Laplacian acting on the absolute scalar ψ ,

− 2

h̄2 Tψ =
∑
τ

∑
α

∂

∂ρτα∗

∂

∂ρτα∗
ψ =

∑
τ

∑
α

∑
η

∑
β

δη
τ δ

β
α

∂

∂ρτα∗

∂

∂ρ
ηβ
∗

ψ, (60)

which is expressed through the mass-weighted laboratory variables (58). On the other
hand, this operator can be written by using generalized coordinates {xp}3N1 like in [16],

∇2ψ ≡ gps∇p∇sψ ≡ gps∇s

∂ψ

∂xs
≡ gps

(
∂2ψ

∂xp∂xs
− :h

ps

∂ψ

∂xh

)
≡ 1√|g|

∂

∂xp

(
gps

√|g| ∂ψ
∂xs

)
, (61)

where ∇s – covariant derivative, the summation being taken over recurring indices. In
applications the last expression is often used, but we will use next to the last. In this
formula gps is the contravariant metric (fundamental) tensor [14] which is inverse to the
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covariant one gps ; :h
ps – coefficients of affine connectedness [14]. :t

ps = 0 for the mass-
weighted laboratory variables relating to Cartesian axes. For the molecular generalized
variables including non-holonomic ones these coefficients have the form [14]

:h
ps =

{
h

ps

}
−;··hps + gpvg

hu;··vsu + gsvg
hu;··vpu. (62)

Here, in addition to the fundamental tensors,
{

h

ps

}
– Christoffel symbol, ;··hps – an object

of anholonomity. For our problem it is necessary to substitute all variables from {xp}3N1
for those used in the sections 2–6, with additional substitution the laboratory variables
for the mass-weighted ones (58). In the process of transformation equations (17), (18)
have the form

dRα
c =

∑
τ

∑
β

(
m−1/2

τ ARα
τβ

)
dρτβ
∗ , dω̃ α =

∑
τ

∑
β

(
m−1/2

τ Aωα
τβ

)
dρτβ
∗ ,

dξ j =
∑
τ

∑
β

(
m−1/2

τ A
j

τβ

)
dρτβ
∗ ;

(63)

dρτα
∗ =

∑
β

(
m1/2

τ Bτα
Rβ

)
dRβ

c +
∑
β

(
m1/2

τ Bτα
ωβ

)
dω̃ β +

∑
k

(
m1/2

τ Bτα
k

)
dξ k. (64)

8. Metric tensors

By using (60), (61), i.e.,

− 2

h̄2 Tψ = gps

(
∂2ψ

∂xp∂xs
− :h

ps

∂ψ

∂xh

)
, (65)

the summation being taken over recurring indices p, s, t = 1, 2, . . . , 3N .
Now one determines the metric tensors expressed in the laboratory and the mole-

cular variables. As was mentioned above :t
ps = 0 for the laboratory variables referring

to the Cartesian axes and comparison of (60) and (65) gives the following relations for
the mass-weighted variables

gps(ρ∗) ≡ gτ̂α η̂β(ρ∗) = δη
τ δ

β
α = gτ̂α η̂β(ρ∗) ≡ gps(ρ∗). (66)

Here every τ̂α or η̂β (τ, η = 1, 2, . . . , N ; α, β = x, y, z) denotes one tensor index which
has 3N values. If one uses usual Cartesian coordinates rτα∗ instead of mass-weighted
ones it can be shown that

gps(r∗)≡ gτ̂α η̂β(r∗) = m−1
τ δη

τ δ
β
α ,

gps(r∗)≡ gτ̂α η̂β(r∗) = mτδ
η
τ δ

β
α

(67)

take place (this follows from (58)). When passing from the variables {xp}3N1 to {xp′ }3N1
the metric tensors are transformed as

gp′s ′ = ∂xp′

∂xp

∂xs ′

∂xs
gps, gp′s ′ = ∂xp

∂xp′
∂xs

∂xs ′ gps (68)
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(the summation is meant). If the metric tensors of our problem written in the labora-
tory (mass-weighted) variables are represented in (66), then (63), (64) are used to make
transformation (68). If the form of the metric tensors expressed in the laboratory non-
weighted variables is (67), then (17), (18) are exploited. In both cases the expressions
of the metric tensors (after some transformations with the use (16), (52)) are identical.
Namely, for gp′s ′ we have

– the components of translational variables

gR̂αR̂β = Mδαβ, M =
∑
τ

mτ ,

– the ones of rotational variables

gω̂αω̂β = Iαδαβ, Iα =
∑
τ

mτ

[(
rτ
)2 − (

rτα
)2]

,

– the ones of internal variables

gjk =
∑
τ

mτ

∑
α

Bτα
j Bτα

k =
∑
τ

mτ
�Bτ
j · �Bτ

k , (69)

– the ones of variables of mixed types

gR̂αω̂β = gR̂αk = gω̂αk = 0.

In a similar manner the components of gp′s ′ are as follows:

gR̂αR̂β =M−1δαβ,

gω̂αω̂β = I−1
α δαβ,

gjk =
∑
τ

m−1
τ

∑
α

Aj
ταA

k
τα =

∑
τ

m−1
τ
�Aj
τ · �Ak

τ . (70)

gR̂αω̂β = gR̂αk = gω̂αk = 0.

In (69), (70) δαβ = δαβ = δα
β is Kronecker delta and gjk = Gjk, (47), gjk = Gjk, (46).

It is evident that matrices of the fundamental tensors written in the laboratory variables
have the form presented in tables 1 and 2.

9. Expression of Laplacian in molecular non-holonomic variables

9.1. General transformation

Substituting (62) in (65) one obtains

− 2

h̄2 Tψ = gps ∂2ψ

∂xp∂xs
− gps

{
h

ps

}
∂ψ

∂xh

+ gps;··hps

∂ψ

∂xh
− gpsgpvg

hu;··vsu
∂ψ

∂xh
− gpsgsvg

hu;··vpu

∂ψ

∂xh
(71)



A.Ya. Tsaune / Nonrelativistic Hamiltonian in the principal axes 113

Table 1
Matrix of the fundamental tensor gps (a blank cell means zero).

dRα
c dω̃ α dξj

M

dRα
c M

M

Ix

dω̃ α Iy

Iz

g11 g12 g13 g14 . . .

g21 g22 g23 g24 . . .

dξj g31 g32 g33 g34 . . .

g41 g42 g43 g44 . . .

..

.
..
.

..

.
..
.

. . .

Table 2
Matrix of the fundamental tensor gps (a blank cell means zero).

dRα
c dω̃ α dξj

M−1

dRα
c M−1

M−1

I−1
x

dω̃ α I−1
y

I−1
z

g11 g12 g13 g14 . . .

g21 g22 g23 g24 . . .

dξj g31 g32 g33 g34 . . .

g41 g42 g43 g44 . . .

...
...

...
...

. . .

(the summation is taken over all recurring indices). Taking into account that gps = gsp

and ;··hps = −;··hsp one has

gps;··hps

∂ψ

∂xh
= 0.

Changing index p to s and s to p in the fourth addend we obtain

−gpsgpvg
hu;··vsu

∂ψ

∂xh
= −gspgsvg

hu;··vpu

∂ψ

∂xh
= −gpsgsvg

hu;··vpu

∂ψ

∂xh
,
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i.e., the fourth and the fifth addends are equal. Since

gpsgsv = δp
v ,

then (71) is

− 2

h̄2 Tψ = gps ∂2ψ

∂xp∂xs
− gps

{
h

ps

}
∂ψ

∂xh
− 2ghu;··ppu

∂ψ

∂xh
. (72)

In accordance with [14] we have expressions for Christoffel symbols{
h

ps

}
= 1

2
ght (∂pgst + ∂sgpt − ∂tgps) (73)

and those for objects of anholonomity

;··hps = Aλ
pA

µ
s ∂[λA

h
µ]. (74)

It should be noted that non-holonomic components [14] and derivatives with respect to
them are

(dζ )h = Ah
ν dζ ν, ∂p = Aµ

p∂µ (h, p = 1, 2, . . . , 3N).

In (74) the operation of alternation is

∂[λA
h
µ] =

1

2

(
∂λA

h
µ − ∂µA

h
λ

)
.

As was mentioned above, the summation is taken over all recurring indices from 1
to 3N . In what follows we use the summation in an explicit form because it is necessary
to distinguish among translation, rotation and internal variables:

3N∑
p=1

(. . .) =
∑
Rα

(α=x,y,z)

(. . .)+
∑
ωα

(α=x,y,z)

(. . .)+
3N−6∑
j=1

(. . .). (75)

Let us consider every addend in (72).

9.2. The second addend in (72)

This addend is

−
3N∑
p=1

3N∑
s=1

gps

3N∑
h=1

{
h

ps

}
∂ψ

∂xh

= −1

2

3N∑
p=1

3N∑
s=1

gps

3N∑
h=1

3N∑
t=1

ght (∂pgst + ∂sgpt − ∂tgps)
∂ψ

∂xh
. (76)
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The use of explicit form of the matrices (tables 1 and 2) symplifies the work with nu-
merous sums, while going to the molecular variables in accordance with (75), the right
side of (76) is represented as

−
3N∑
p=1

3N∑
s=1

gps

3N∑
h=1

{
h

ps

}
∂ψ

∂xh

= −1

2

∑
α

gR̂αR̂α

3N∑
h=1

3N∑
t=1

ght(∂R̂αgR̂αt + ∂R̂αgR̂αt − ∂tgR̂αR̂α)
∂ψ

∂xh

− 1

2

∑
α

gω̂α ω̂α

3N∑
h=1

3N∑
t=1

ght (∂ω̂αgω̂αt + ∂ω̂αgω̂αt − ∂tgω̂α ω̂α)
∂ψ

∂xh

− 1

2

3N−6∑
j=1

3N−6∑
k=1

gjk

3N∑
h=1

3N∑
t=1

ght(∂jgkt + ∂kgjt − ∂tgjk)
∂ψ

∂xh
.

In parentheses of the first addend only those of gR̂αt (see table 1) are not equal to
zero for which t = R̂α, gR̂α R̂α = M = const. Therefore, all derivatives are equal to
zero and the first addend is also zero. Similarly in parentheses of the second addend
only gω̂α ω̂α are not zero, gω̂α ω̂α = Iα , the moments of inertia depending only on the
internal variables ξ j . If one takes into consideration that, in accordance with table 1,
gR̂αj = gω̂αk = 0 then we obtain

−
3N∑
p=1

3N∑
s=1

gps

3N∑
h=1

{
h

ps

}
∂ψ

∂xh

= 1

2

∑
α

I−1
α

3N−6∑
j=1

3N−6∑
k=1

gjk(∂kIα)
∂ψ

∂ξj

− 1

2

3N−6∑
j=1

3N−6∑
k=1

gjk

3N−6∑
i=1

3N−6∑
l=1

gil(∂jgkl + ∂kgjl − ∂lgjk)
∂ψ

∂ξ i
.

To simplify these expressions it is necessary to use the relations among variables ob-
tained in the sections 2–6 of this work. In that case the form of the second addend in
(72) is

−
3N∑
p=1

3N∑
s=1

gps

3N∑
h=1

{
h

ps

}
∂ψ

∂xh

=
∑
α

I−1
α

∑
j

∑
τ

{∑
β

rτβA
j

τβ − rταAj
τα

}
∂ψ

∂ξj

+
∑

i

∑
τ

∑
α

∑
η

∑
β

m−1
τ

(∑
j

B
ηβ

j Aj
τα

)
Ai

τ̂αη̂β

∂ψ

∂ξ i
, (77)
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where Ai

τ̂αη̂β
= ∂2ξ i/(∂rτα∗ ∂r

ηβ∗ ).

9.3. The third addend in (72) and sum of the second and the third addends

In the third addend non-zero components of the object of anholonomity are ob-
tained from (74) together with (17), (18)

;··ppu = ;··ω̂α
ω̂αj =

1

2Iα

∑
τ

mτ

(∑
β

rτβB
τβ

j − rταBτα
j

)
,

α = x, y, z; j = 1, 2 . . . , 3N − 6, (78)

(there is no summation over p and ω̂α in this formula). The other non-zero components
to be used are

;··ω̂α
kj =

1

Iα

∑
τ

mτ

( �Bτ
k × �Bτ

j

)α = 1

Iα

∑
τ

mτ

∑
β

∑
γ

εαβγB
τβ

k B
τγ

j ,

α = x, y, z; k, j = 1, 2 . . . , 3N − 6. (79)

By taking into account (78), the third addend is

−2
3N∑
h=1

3N∑
u=1

3N∑
p=1

ghu;··ppu

∂ψ

∂xh

= −2
3N−6∑
i=1

3N−6∑
j=1

∑
α

gij;··ω̂α
ω̂αj

∂ψ

∂ξ i

= −
3N−6∑
i=1

3N−6∑
j=1

∑
α

gij I−1
α

∑
τ

mτ

(∑
β

rτβB
τβ

j − rταBτα
j

)
∂ψ

∂ξ i

= −
3N−6∑
i=1

∑
α

I−1
α

∑
τ

[∑
β

rτβ

(
mτ

3N−6∑
j=1

gijB
τβ

j

)
− rτα

(
mτ

3N−6∑
j=1

gijBτα
j

)]
∂ψ

∂ξ i
.

Comparison of the expression in parentheses and (50) shows that

−2
3N∑
h=1

3N∑
u=1

3N∑
p=1

ghu;··ppu

∂ψ

∂xh
= −

∑
α

I−1
α

3N−6∑
i=1

∑
τ

(∑
β

rτβAi
τβ − rταAi

τα

)
∂ψ

∂ξ i
.

In (72) the sum of the third and the second (77) addends is

−gps

{
h

ps

}
∂ψ

∂xh
− 2ghu;··ppu

∂ψ

∂xh

=
∑

i

[∑
τ

∑
α

∑
η

∑
β

m−1
τ

(∑
j

B
ηβ

j Aj
τα

)
Ai

τ̂αη̂β

]
∂ψ

∂ξ i
, (80)
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where Ai

τ̂αη̂β
= ∂2ξ i/(∂rτα∗ ∂r

ηβ∗ ), in the left side the summation being taken over re-
curring indices from 1 to 3N . The expression in parentheses can be transformed in
accordance with (44), (45), but there is no necessity to make it.

10. The first addend in (72)

Detailed examination of this addend is necessary due to non-zero components of
the object of anholonomity (79), since, in accordance with [13], the following relations
must take place:

∂2ψ

∂ξj∂ξ k
− ∂2ψ

∂ξk∂ξ j
= 2

∑
α

;··ω̂α
kj

∂ψ

∂ω̃ α
; k 	= j, k, j = 1, 2, . . . , 3N − 6. (81)

It should be noted that in [13] as well as in other works on analytical mechanics so-called
three-indices symbols γ h

ps are in common use instead of objects of anholonomity. These
symbols satisfy the relation

γ h
ps = 2;··hps .

Let us write out the first addend in (72) expressed in the molecular variables, taking into
consideration the form of the metric tensor from table 2.

gps ∂2ψ

∂xp∂xs
= M−1

∑
α

∂2ψ

∂Rα
c ∂R

α
c

+
∑
α

I−1
α

∂2ψ

∂ω̃ α∂ω̃ α
+
∑
j

∑
k

gjk ∂2ψ

∂ξj∂ξ k
. (82)

In the last term the indices j, k form couples (jk) denoting addends in the sum. Both
indices range 1, 2, . . . , 3N − 6 independently. Let us define them in the following way:
when j = k let us denote them l = 1, 2, . . . , 3N − 6; in the other cases let it be j < k

for every couple, so that j = 1, 2, . . . , 3N − 7, k = 2, 3, . . . , 3N − 6. In so doing in
(82) the last addend is

3N−6∑
j=1

3N−6∑
k=1

gjk ∂2ψ

∂ξj∂ξ k

=
3N−6∑
l=1

gll ∂2ψ

∂ξ l∂ξ l
+

3N−6∑
k>j

3N−7∑
j=1

gkj ∂2ψ

∂ξk∂ξ j
+

3N−6∑
k>j

3N−7∑
j=1

gjk ∂2ψ

∂ξj∂ξ k
.

Relation (81) is rewritten as

∂2ψ

∂ξj∂ξ k
= ∂2ψ

∂ξk∂ξ j
+ 2

∑
α

;··ω̂α
kj

∂ψ

∂ω̃α
, k > j. (83)
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Substituting it in the previous formula we obtain

3N−6∑
j=1

3N−6∑
k=1

gjk ∂2ψ

∂ξj∂ξ k

=
3N−6∑
l=1

gll ∂2ψ

∂ξ l∂ξ l
+ 2

3N−6∑
k>j

3N−7∑
j=1

gkj ∂2ψ

∂ξk∂ξ j

+ 2
3N−6∑
k>j

3N−7∑
j=1

gjk
∑
α

;··ω̂α
kj

∂ψ

∂ω̃α

=
3N−6∑
l=1

gll ∂2ψ

∂ξ l∂ξ l
+ 2

3N−6∑
k>j

3N−7∑
j=1

gkj ∂2ψ

∂ξk∂ξ j

+ 2
3N−6∑
k>j

3N−7∑
j=1

gjk
∑
α

1

Iα

N∑
τ=1

mτ

( �Bτ
k × �Bτ

j

)α ∂ψ

∂ω̃ α
. (84)

As �Bτ
k × �Bτ

j = 0 when j = k, the condition to (k > j ) can be changed to (k � j ) in the
last addend. This leads (84) to the expression

3N−6∑
j=1

3N−6∑
k=1

gjk ∂2ψ

∂ξj∂ξ k

=
3N−6∑
l=1

gll ∂2ψ

∂ξ l∂ξ l
+ 2

3N−6∑
k>j

3N−7∑
j=1

gjk ∂2ψ

∂ξk∂ξ j

+ 2
∑
α

1

Iα

N∑
τ=1

mτ

{
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α} ∂ψ

∂ω̃ α
. (85)

In the right side of (83) the second addend can be presented as an isolated (the last)
addend in the right sides of (84), (85). This allows one to rewrite (85) in the form

3N−6∑
j=1

3N−6∑
k=1

gjk ∂2ψ

∂ξj∂ξ k

=
3N−6∑
j=1

3N−6∑
k=1

gjk

(
∂2ψ

∂ξj∂ξ k

)
comm

+ 2
∑
α

1

Iα

N∑
τ=1

mτ

{
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α} ∂ψ

∂ω̃α
,
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where ∂2ψ/(∂ξ j∂ξ k) 	= ∂2ψ/(∂ξk∂ξ j ) in the left side in accordance with (81), (83) and
∂2ψ/(∂ξ j∂ξ k)comm = ∂2ψ/(∂ξk∂ξ j )comm in the right side. In such a manner, (82), i.e.,
the first addend in (72), is as follows:

gps ∂2ψ

∂xp∂xs
=M−1

∑
α

∂2ψ

∂Rα
c ∂R

α
c

+
∑
α

I−1
α

∂2ψ

∂ω̃α∂ω̃α
+

3N−6∑
j=1

3N−6∑
k=1

gjk

(
∂2ψ

∂ξj∂ξ k

)
comm

+ 2
∑
α

1

Iα

N∑
τ=1

mτ

{
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α} ∂ψ

∂ω̃α
. (86)

10.1. Laplacian and Schrödinger equation expressed in the Laboratory variables

Taking into account (80), (86), Laplacian (72) acting on the absolute scalar ψ can
be written as

− 2

h̄2 Tψ = 1

M

∑
α

∂2ψ

∂Rα
c ∂R

α
c

+
∑
α

I−1
α

∂2ψ

∂ω̃α∂ω̃α
+

3N−6∑
j=1

3N−6∑
k=1

gjk

(
∂2ψ

∂ξj∂ξ k

)
comm

+ 2
∑
α

1

Iα

N∑
τ=1

mτ

[
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α] ∂ψ

∂ω̃α

+
3N−6∑
k=1

[
N∑

τ=1

N∑
η=1

∑
α

∑
β

m−1
τ

(
3N−6∑
j=1

B
ηβ

j Aj
τα

)
Ak

τ̂αη̂β

]
∂ψ

∂ξk
, (87)

where Ak

τ̂αη̂β
= ∂2ξ k/(∂rτα∗ ∂r

ηβ∗ ). The Schrödinger equation is obtained through multi-

plying both sides of (87) by (−h̄2/2) and adding the potential energy function U

− h̄2

2

{
1

M

∑
α

∂2ψ

∂Rα
c ∂R

α
c

+
∑
α

I−1
α

∂2ψ

∂ω̃α∂ω̃α
+

3N−6∑
j=1

3N−6∑
k=1

gjk

(
∂2ψ

∂ξj∂ξ k

)
comm

+ 2
∑
α

1

Iα

N∑
τ=1

mτ

[
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α] ∂ψ

∂ω̃α

+
3N−6∑
k=1

[
N∑

τ=1

N∑
η=1

∑
α

∑
β

m−1
τ

(
3N−6∑
j=1

B
ηβ

j Aj
τα

)
Ak

τ̂αη̂β

]
∂ψ

∂ξk

}
+ Uψ = Eψ. (88)

Let us represent −h̄2 = (−ih̄)(−ih̄) and introduce operators

Pcα = −ih̄ ∂
∂Rα

c
, Lα = −ih̄ ∂

∂ω̃α (α = x, y, z);
pk = −ih̄ ∂

∂ξk , k = 1, 2, . . . , 3N − 6.
(89)
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Then (88) has the form{
1

2M

∑
α

PcαPcα +
∑
α

1

2Iα
LαLα + 1

2

3N−6∑
j=1

3N−6∑
k=1

gjkpjpk

− ih̄
∑
α

1

Iα

N∑
τ=1

mτ

[
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α]
Lα

− ih̄

2

3N−6∑
k=1

[
N∑

τ=1

∑
α

N∑
η=1

∑
β

m−1
τ

(
3N−6∑
j=1

B
ηβ

j Aj
τα

)
Ak

τ̂αη̂β

]
pk

}
+ Uψ = Eψ, (90)

where i = √−1. The expression in braces {· · ·} is the kinetic energy operator T of the
nonrelativistic N-particle system in the principal central moving axes. It is evident that
the Hamiltonian of this system and the Schrödinger equation (90) are

H = T + U, Hψ = Eψ.

Restricting oneself to only Coulomb interaction among particles forming a molecule, the
potential energy function is

U = 1

4πε0

∑
η

∑
τ 	=η

1

2

eτ eη

rτη
, (91)

in nonrelativistic approximation. Here eτ – a charge of τ th particle (with an appropriate
sign), rτη – a distance between the τ th and the ηth particles.

11. Jacobian, volume element, rovibronic equation and the Hamiltonian

It is well known (e.g., [17]) that Jacobi matrix for transition from variables xi

(i = 1, 2, . . . , n) to functions Fl(x) (l = 1, 2, . . . , m) is

M =


∂F1

∂x1

∂F1

∂x2
. . .

∂F1

∂xn

. . . . . . . . . . . .

∂Fm

∂x1

∂Fm

∂x2
. . .

∂Fm

∂xn

 . (92)

If m = n then determinant of (92) is Jacobian to be denoted as D = det M. In our
case, we consider xi in (92) to be the molecular variables dRα

c , dω̃ α (α = x, y, z);
dξ k (k = 1, 2, . . . , 3N − 6) whereas the laboratory variables drτα∗ (τ = 1, 2, . . . , N ;
α = x, y, z) play the role of Fl . By using (18) it can be shown that the Jacobi matrix
(92) (let it be B) has the form displayed in table 3.

In accordance with (17) the inverse matrix A = B−1 is displayed in table 4.
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Evidently,

D = det(B) = det
(
B ′
) = [

det(A)
]−1 = [

det
(
A′
)]−1

, (93)

where B ′ and A′ are transposes of the matrices B and A, respectively. Properties of
determinants and matrices are used to obtain the following equalities:

Table 3
Matrix B of transition from the molecular variables dRα

c , dω̃ α , dξk to the laboratory ones drτα∗ (18).

B dRx
c dRy

c dRz
c dω̃ x dω̃ y dω̃ z dξ1 dξ2 dξ3 . . .

dr1x∗ 1 r1z −r1y B1x
1 B1x

2 B1x
3 . . .

dr1y∗ 1 −r1z r1x B
1y
1 B

1y
2 B

1y
3 . . .

dr1z∗ 1 r1y −r1x B1z
1 B1z

2 B1z
3 . . .

dr2x∗ 1 r2z −r2y B2x
1 B2x

2 B2x
3 . . .

dr2y∗ 1 −r2z r2x B
2y
1 B

2y
2 B

2y
3 . . .

dr2z∗ 1 r2y −r2x B2z
1 B2z

2 B2z
3 . . .

dr3x∗ 1 r3z −r3y B3x
1 B3x

2 B3x
3 . . .

dr3y∗ 1 −r3z r3x B
3y
1 B

3y
2 B

3y
3 . . .

dr3z∗ 1 r3y −r3x B3z
1 B3z

2 B3z
3 . . .

...
...

...
...

...
...

...
...

...
...

. . .

Table 4
Matrix A of transition from the laboratory variables drτα∗ to the molecular ones dRα

c , dω̃ α , dξk (17).

A dr1x∗ dr1y∗ dr1z∗ dr2x∗ dr2y∗ dr2z∗ dr3x∗ dr3y∗ dr3z∗ . . .

dRx
c

m1
M

m2
M

m3
M

. . .

dRy
c

m1
M

m2
M

m3
M

. . .

dRz
c

m1
M

m2
M

m3
M

. . .

dω̃ x −m1
Ix

r1z m1
Ix

r1y −m2
Ix

r2z m2
Ix

r2y −m3
Ix

r3z m3
Ix

r3y . . .

dω̃ y m1
Iy

r1z −m1
Iy

r1x m2
Iy

r2z −m2
Iy

r2x m3
Iy

r3z −m3
Iy

r3x . . .

dω̃z −m1
Iz

r1y m1
Iz

r1x −m2
Iz

r2y m2
Iz

r2x −m3
Iz

r3y m3
Iz

r3x . . .

dξ1 A1
1x A1

1y A1
1z A1

2x A1
2y A1

2z A1
3x A1

3y A1
3z . . .

dξ2 A2
1x A2

1y A2
1z A2

2x A2
2y A2

2z A2
3x A2

3y A2
3z . . .

dξ3 A3
1x A3

1y A3
1z A3

2x A3
2y A3

2z A3
3x A3

3y A3
3z . . .

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

. . .
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D= [
det(B)det(B ′)

]1/2 =
[(

N∏
τ=1

m3
τ

/ N∏
η=1

m3
η

)
det(B)det

(
B ′
)]1/2

=
(

N∏
η=1

m3
η

)−1/2[
det(B1)det

(
B ′
)]1/2 =

(
N∏

η=1

m3
η

)−1/2[
det

(
B1B

′)]1/2
.

The matrix B1 results from B table 3 by multiplying every of three rows drτα∗ by mτ

(α = x, y, z, τ = 1, 2, . . . , N). The product B1B
′ is the matrix depicted in table 1, i.e.,

D =
(

N∏
η=1

m3
η

)−1/2[
det(gps)

]1/2
.

In a similar manner, by using the matrix A from table 4 we obtain

D= [
det(A)det

(
A′
)]−1/2 =

[(
N∏

τ=1

m3
τ

/ N∏
η=1

m3
η

)
det(A)det

(
A′
)]−1/2

=
(

N∏
τ=1

m3
τ

)−1/2[
det

(
A1A

′)]1/2 =
(

N∏
τ=1

m3
τ

)−1/2[
det

(
gps

)]−1/2
.

The matrix A1 results from A by multiplying every of three columns drηα
∗ by mη, η =

1, 2, . . . , N . The product A1A
′ coincides with the matrix shown in table 2. Taking into

consideration table 1, table 2, the final expression is

D =
(

M3∏N
η=1 m3

η

)1/2

D′, (94)

D′ = [
Ix(ξ)Iy(ξ)Iz(ξ)

]1/2{
det

[
gjk(ξ)

]}1/2 = [
Ix(ξ)Iy(ξ)Iz(ξ)

]1/2{
det

[
gjk(ξ)

]}−1/2
.

(95)
In D′ all variables depend on ξ 1, ξ 2, . . . , ξ 3N−6, only.

As a function of the laboratory variables the volume element is

dV =
N∏

τ=1

drτx
∗ drτy

∗ drτz
∗

and as that of the molecular variables

dV = |D| dRx
c dRy

c dRz
c dω̃ x dω̃ y dω̃ z

N∏
j=1

dξ j . (96)

Let us transform the rotational part of the volume element for going from the non-
holonomic variables dω̃ α (α = x, y, z) to differentials dϕ, dθ , dχ of Euler angles which
are the generalized (Lagrangian) variables. To accomplish this it is necessary to find
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the Jacobi matrix (92) by using (10), dϕ, dθ , dχ playing the role xi . Jacobian of this
transformation is

det

− sin θ cos χ sin χ 0
sin θ sin χ cos χ 0

cos θ 0 1

 = − sin θ.

Then

dω̃ x dω̃ y dω̃ z = |− sin θ | dϕ dθ dχ

and the final form of (96) is

dV = |D| dRx
c dRy

c dRz
c sin θ dϕ dθ dχ

N∏
j=1

dξ j . (97)

Let us denote

R ≡ (
Rx

c , R
y
c , R

z
c

)
, ζ ≡ (ϕ, θ, χ), ξ ≡ (

ξ 1, ξ 2, . . . , ξ 3N−6),
for short. In this case, (97) is

dV = |D| dR sin θ dζ dξ and ψ = ψ(R, ζ, ξ). (98)

Scalar product of vectors corresponding ψ is

(ψ,ψ) =
∫
(R)

∫
(ζ )

∫
(ξ)

|D|ψ(R, ζ, ξ)ψ(R, ζ, ξ) dR sin θ dζ dξ. (99)

As the normalization condition

(ψ,ψ) = 1 (100)

should be met then taking into account (94) the expression (99) can be rewritten as

(ψ,ψ) =
∫
(R)

∫
(ζ )

∫
(ξ)

∣∣D′∣∣ψ(R, ζ, ξ)ψ(R, ζ, ξ) dR sin θ dζ dξ, (101)

since the fixed multiplier in the right side (94) is included in a normalizing factor in
(101). The same result is obtained for non-normalized functions ψ in solving the varia-
tional problem based on Rayleigh fraction

(ψ,Hψ)

(ψ,ψ)
,

or for approximate representation of the Schrödinger equation as a matrix one on a set
of basic functions depending on (R, ζ, ξ ).

The general Schrödinger equation both in coordinate representation (88) and in
operator one (90) has some peculiarities:
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– the coefficient by the operator
∑

α(∂/∂R
α
c )(∂/∂R

α
c ) does not depend on coordi-

nates;

– the coefficients by the other differential operators, Jacobian (95) and the func-
tion of potential energy U (having form (91) for molecules) do not depend on
coordinates of center of mass Rα

c (α = x, y, z).

This leads to the fact that the complete wavefunction can be represented as

ψ(R, ζ, ξ) = ψtrans(R)F(ζ, ξ)

and motion of center of mass is separated. F – a rovibronic wavefunction is a solution
of the Schrödinger equation

− h̄2

2

{∑
α

1

Iα

∂2F

∂ω̃ αω̃ α
+
∑
α

2

Iα

∑
τ

mτ

[
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α] ∂F

∂ω̃α

+
3N−6∑
j=1

3N−6∑
k=1

gjk

(
∂2F

∂ξj∂ξ k

)
comm

+
3N−6∑
k=1

[
N∑

τ=1

∑
α

N∑
η=1

∑
β

m−1
τ

(
3N−6∑
j=1

B
ηβ

j Aj
τα

)
Ak

τ̂αη̂β

]
∂F

∂ξk

}
+UF = EF, (102)

where E – an eigenvalue of a rovibronic problem. To obtain corresponding Hamiltonian
it is necessary to use (89), that leads to

H =
∑
α

1

2Iα
LαLα− ih̄

∑
α

1

Iα
Wα

1 Lα+ 1

2

∑
j

∑
k

gjkpjpk− ih̄
∑
k

Wk
2 pk+U, (103)

where

Wα
1 =

∑
τ

mτ

[
3N−6∑
k�j

3N−6∑
j=1

gjk
( �Bτ

k × �Bτ
j

)α]
,

Wk
2 =

1

2

N∑
τ=1

∑
α

N∑
η=1

∑
β

m−1
τ

(
3N−6∑
j=1

B
ηβ

j Aj
τα

)
Ak

τ̂αη̂β
.

For the rovibronic problem Jacobian has the form (95), the volume element based on
(95) is

dVrovibron = |D′| sin θ dθ dϕ dχ
3N−6∏
j=1

dξ j .

In this paper the use of (102), (103) for solving various problems is not considered.
We only note that if all terms containing h̄ are omitted in (103) then (103) becomes the
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classical expression of rovibronic energy that is consistent with the Bohr correspondence
principle.
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