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This paper is concerned with derivation of a complete Hamiltonian and its rovibronic part
containing no anomalous (singular) coefficientslike Iy /2(1g — I )2 by the square components
of the orbital angular momentum for an N-particle system. The work consists of two parts. In
the first part the reasons for appearance of the anomalies (in earlier papers[1,2] aswell asin
more recent ones [4-9]) are analyzed and a genera procedure of removing the singularitiesis
proposed through the correct consideration of both determination of the angular momentum
and mutual displacements of the particles. The complete description of transition from labo-
ratory variables to molecular ones including non-holonomic coordinates is presented. In the
second part the explicit expressions of the Hamiltonians are obtained through the use of tensor
methods. Thefirst of them is asfollows:
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Here P,, Ly, pi ae the components of the total momentum, the angular momentum and
momenta of internal mation.

KEY WORDS: complete and rovibronic Hamiltonians, laboratory and molecular infinitesi-
mal variables, dynamic and deformation rotations of the principal axes, fundamental tensors,
coefficients of connectedness, object of anholonomity, Jacobians of transformations

1. Introduction

Even in the first papers [1,2] dedicated to the successive derivation of the kinetic
energy operator for polyatomic molecules (N-particle systems) in the principa central
moving axes, the coefficients by the square of components of the angular momentum
having the form
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were abtained unlike the commonly used 1/21,, («, B, y) — cyclic permutation (x, y, z).
In [3], which initiated speculation (1), Van Vleck upheld the validity of the formula

(Poz - é‘a)z
HI'Ot:ZT7 a=x,Y,%2, (2)

o

for the rotational part of the kinetic energy operator; here P,—components of the total
angular momentum with respect to the principal axes, ¢, — components of vibrational
angular momentum. To prove impossibility of appearance of anomalous expressions (1)
he considered a simple hypothetical two-dimensional system with a special set of vari-
ables. Selecting perturbation and using the second order perturbation theory Van Vleck
[3] showed that the appearance of expressions like (1) could be avoided in this model
problem. Discussion of more redlistic three-dimensional problems considered in [1,2]
was qualitative in nature and as to precise calculations Van Vleck [3] noticed:

This calculation might not be easy to make explicitly, due to the clumsy, unsymmet-
rical nature of the coordinates, but can only lead to (2), at least when the moments of
inertia are unequal, since we have proved by means of Eckart’s coordinates that (2)
then isinevitable.

Hence in [3] the possibility of avoiding singularities (1) in the rotational part of the ki-
netic energy operator was shown, but there was no successive derivation of the molecular
Hamiltonian in the principal central axes (PCA) without such singularities.

Meanwhile, the (PCA) as a moving frame are widely used in the nuclear theory.
Thetotal description and references can befound in [4,5]. Extended and consequtive ex-
amination of introducing these axes aswell as of using them in the theory of moleculesis
presented in [6]. The papers [7-9] should be mentioned as those wherein the successive
derivation of the molecular Hamiltonians in the PCA of inertia was performed. To our
opinion the most surprising general result of [4-9] isthat the rotational part of all Hamil-
tonians contains singularities (1) like in [1,2]. Stability of appearance of the anomalous
expressions in the works of different authors testifies to the fact that a general important
factor leading to the anomaly is not taken into account. The analysis made leads us to
conclude that this factor is the existence of two different reasons for rotation of PCA of
a system of particles interacting by means of force fields and having no rigid constraints
with respect to the laboratory frame of reference. One of these rotations (let us cal it
“dynamics’) is completely determined by the angular momentum. The other one has no
connection with the angular momentum, but it is connected with redistribution of mass
in the system (“additional” or “deformation” rotation). If these rotations are separated
exactly (accurately) then the anomalous expressions (1) do not arise in derivation of the
Hamiltonian that is shown below.

In fact there are two parts in this paper. In the first one (sections 2-6) equations
of transformations which connect the laboratory and the moving frames of reference
are obtained through the well-known method in mechanics [10] — that of infinitesimal
variables. In the second part (sections 7-11) the Hamiltonian is derived by using tensor
methods.
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2. Preliminaries
2.1. The system of particles. The systems of reference

A molecule is considered to be a system of N kinematically unrelated particles
without explicit separation of electrons and nuclei. Two right-handed Cartesian coor-
dinate system are introduced: a laboratory one (inertial, fixed) and a molecular one
(noninertial, moving). Each system is defined by the origin and the frame of vectors:

-

(0i6njuk).,  (0%1.].k) ©)
for the laboratory and the molecular system, respectively. Here O°€ is the center of mass
of the molecule. The following aggregates of indices denoting

— numbers of the particles: 7,n,u =1,2,..., 3N,

— projections on the moving axes: «, B,y = x, y, 2,

— numbers of internal (see below) variables: j, k,1=1,2,...,3N — 6,
are used.

In the laboratory and the molecular systems a configuration of the molecule is
defined by the sets of radius-vectors

{o:rr)).  {os)Y, (@)

respectively.
It is evident that

=T n =T D 1 =T
ri=Rc+T7", RC=MZmrr*,M=Zmr, 5)

T

where m, —mass of tth particle.
Projections on the moving axis O°X are

r*=rl i, r* =rt .. (6)

For the other moving axes formulae are analogous.
The condition of the center of mass of the system of the particles and conditions of
the axes being principal have form

Zmr?r =0 Zmrrmr”3 =0, a#p. (7

2.2. Operators of projections of orbital angular momentum on the moving axes

Eulerian angles ¢, 6, x and operators of projections of the orbital angular momen-
tum L, (@ = x, y, z) on the moving axes are defined in the same way asin [11],
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L,=—ih cosx +sin 9 + cot 6 cos 9
= Siné 9g x50 “ox )
. [siny a 0 . ad
L,=—ih X T L cosy— —cotfsing— |, (8)
sinéd dp a0 ax
ad
L,=—ih—.
ax

The same expression can be found in [4, Vol. 1] and in [12]. Respective projections of
angular velocity on the moving axes are as follows:
W' =—¢sinfcosy +Osiny,
o’ =¢sinésiny + 6 cosy, (9)
w*=¢Ccoso + x.
In analytical mechanics the values w* (o = x, y, z) are treated as quasi-velocities [13].
Multiplication (9) by the element of time dr leads to the values caled differentials of
quasi-coordinates [13]
dw* =—sinfcosy dp + siny dj,
dw Y =sind sinx dp + cos x do, (20)
dw * =cosé dy + dy,
athough there are no generalized coordinates in terms of Lagrange which satisfy (10).

In [14] more convenient term for these values is used — non-holonomic components of
an object or non-holonomic (infinitesimal) coordinates. We will follow this term for

do =w*dt, a=x,y,z. (11

Using (8) and (10) it can be shown [15], that operators of projections of the orbital
angular momentum on the moving axes (8) have the form

.0
L,=—-ih—, a=x,y,z. (12
dw®

3. Infinitesimal stages and independent variables

Motion of the system of the particlesis considered to be a sequence of infinitesimal
stages with duration of d¢. Each stage is limited to the initial and to the final configu-
ration of the particles, these configurations having their PCA. The continuity conditions
of the particles are vaid:

— theinitia configuration of a stageisthefina onefor the previous stage, the final
configuration of a stage isthe initial one for the subsegquent stage;

— the PCA of theinitial configuration are transformed to the anal ogous ones of the
final configuration.

Theinitia configurations are represented in (4).
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3.1. Infinitesimal independent variables

In the laboratory frame of reference these variables are a set of infinitesimal
changes in the radius-vectors of the particles:

drt)y = {drfF, dr?, drEF)Y

while making transition from the initial configuration (4) to the final one
{07 +diT}]. (13)
In the moving frame of reference the infinitesimal variables are classified into three
groups:

— the changes in the radius-vectors of the center of mass (5)
> 1 =T o 1 T
dRC:MZr:mfdr*’ dr; :MZmrdr* , aA=2Xx,Yy,2, (14

while making transition from the initial configuration to the final one;

— the differentids d¢/ (j = 1,2, ..., 3N — 6) of theinternal molecular variables
£/ which are invariant with respect to trandations and rotations, these variables
define mutual location of the particles of amolecule;

— the non-holonomic rotations (11)
{d&*, d&3”, di3*) = d&,

which transform the PCA of the initial configuration to the analogous axes of
the final one. Asthistakes place, do * must comply with the definition (12), i.e.,
include only dynamic rotation of the axes. It isthe operation that is essential for
eliminating the singularities (1) and it will be considered |ater.

Asthe laboratory variables are independent, the following equalities take place

or;®
W:S;Sg; ,n=12...,N; o,B=x,y,2 (15)
(8,. 85 — Kronecker symbols), and for the molecular variables in different groups we
have
R 0" o€/ ;
< =43, — =43, — =5 16
Derivatives of coordinates from different groups are equal to zero.
It is convenient to write general relations among the laboratory and the molecular
variables in the form

dRY =) "> ARrdr, dat =) A%drf, del =) Al drf,
T B T B T B

(17)
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&7 =" BredRE + > BIadw’ + ) BIe det. (18)
5 g ;

The coefficients from (17), (18) are determined later. Hereafter only the infinitesimal
variables are used and the term “infinitesimal” is often omitted if its usageis clear.

4. Transtion to thefinal configuration in the moving axes

In the laboratory and the moving frames of reference the initial configurations are
represented in (4), and the final configuration (13) isin the laboratory frame of reference.
The theorem of mation addition is represented as

0Ff = dRc+di x 7"+ dF",  dF" =) CFdgk (19)
k

and it follows from the theorem of velocity addition in relative motion [10,13]
Vi=Ve+dxF + V7,

where V7, V™ —the velocities of the rth particle with respect to the |aboratory and the
moving frames of reference, respectively. From thisit isinferred that the final configu-
ration has the form

0% 72} = 0% 7" +d& x 7™ + &7} (20)
.;’

in the moving frames of reference. In so doing the axes (OC; 7, 12) (3), are shifted to
dR¢ and rotated on dé, are transformed to

(0%:77, jr ky) = (0% +d& x i, j +d& x .k +d& x k), (21)
which are the central ones. But, generally speaking, they are not the principal ones for

the final configuration (20). Making an additional rotation (21) on d_cﬁ, we obtain the
final modified axes

(O;:f;;fma _;fmal_éfm) = (Ot;’zf +(ﬁ X ;f’ ]f +(ﬁ X -;f’l_éf + (ﬁ x I_éf) (22)

Like (21) they are central, and they can be transformed to the principal axes for the final
configuration, if the following equalities (analogous to (7)) are satisfied

Y me (7 i) (75 Jm) =00 Y me(F e jpm) (7 kpm) =0,

Substituting corresponding expressions from (20)—22) and restricting oneself to infini-
tesimal quantities up to the second order we obtain

1
1,3_17

do® = —

Z mt(rtﬂ ar®™ + % drtﬂ), (23)
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here the set of indices (a, 8, ) isacyclic permutation of (x, y, z). Taking into account
the second equality from (19) one can see that d®* depends only on mutual displace-
ments of the particlesd¢/, j = 1,2, ..., 3N — 6, and does not depend on dR. and dis.

Thus the additional rotation of the axes (21) on the angle do (additional, deforma-
tion rotation) makes them the PCA (22) of the final configuration (20). This transition
isa“passive’” form of transformation (alias) [12]. It can be replaced with “active” form
(alibi) by rotating the configuration (20) on the angle (—(ﬁ) without changing the axes
(21). Limiting onesdlf to infinitesimal quantities of the first order this leads to the modi-
fied final configuration

N

[0% 75, 1Y = {0% 77 +d& x 7 + dF" —dd x 77}, (24)

for which the axes (21) are PCA.. In so doing the theorem of motion addition (19) isalso
modified and has the form

07T = dR, + d& x 7* + dF" — dd x 7. (25)

It is the two latter equalities that are the basis for further transformations. But the
dynamic rotation dw is not determined yet, and presence of dd is, in accordance with
(23) the source of singularities (1). Let us consider these questions.

5. Determination and refinement of rotations
In (25) we make the following transformations: dR is carried over to the left side,

then vector product of m.7* and both sides of the equdlities is calculated and, finally,
sum over t isperformed. Thisleadsto

D mex (AFF = dR) = Y meF* x (W@ x ) 4 Y me x (07— db x 7). (26)

Dividing both sides of (26) by dr we have

Zr:mfff X (d(;: —%) = Zr:mflﬁ X (@x?r)+2r:mfi7’ X (dgt dd

(11) being taken into account. The left side expression is the classical orbital angular
momentum of N-particle system with respect to the center of mass O° of this system
[10,13]. In the right side the second sum depends only on velocities of relative motion
d&/ /dr (see the second addend in (19) and aremark in connection with (23)). Therefore,
the orbital angular momentum of the system of particles has to be completely determined
with the angular velocities o in the first addend in the right side (27), i.e.,

=T d’_{: d]_é =T = =T
;mtr X(dt —d—t(:):thr x(a)xr).
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Multiplying both sides by dr, we obtain an equation for determination of the dynamic
rotation dw

Zmr X dr —dRC Zmr X da)xr) (28)

After substituting it in (26), one obtains an equation for refinement of the rotation dd

S om T x &t =Y m i x (A x 7). (29)

5.1. Expressions of components of the dynamic rotation in the moving frame of
reference

If one takes into consideration the first equality from (7) then
S o x dity = (Zm,7t> g =
and (28) can be rewritten in the form
D om T x O =) m T x (d x 7). (30)
By using the formula of double vector product [16], we obtain

Y mo T x 0L = m [da(FT ) — (7 da) .

Going to the projections on the PCA of theinitial configuration O¢; i, ] k (see (3)) and
taking into account (7), we have

Zmr FUox dF)Y = da® Zm, — (r)?):
Asthe principal moments of inertia of the initial configuration of the particles are
o= m[(r")* = (r)’]. a=xy.z (31)
then the final expressions of the components of the dynamic rotation are as follows

d@“:%-Zm, (F* x dFf) Zm,ZZeaﬁyrtﬂdr;”, a=ux,512 (32
L 14

here .4, —the symbol of Levi—Civita[16]. In what follows 1, is defined by (31).
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5.2. Thesecond variant of the additional rotation of the axes and theorems of motion
addition

Thefirst variant is (23), the second one is obtained from (29). If (29) and (30) are
compared, then it is clear that the former is obtained from the latter with substitutions
di — dd and drf — dr*. Therefore, making these substitutions we have the second
variant of the additional rotation

dq)a:%.zmr re xdr Zmrz;gaﬁyrtﬂdrty, o=x,Yy,Z. (33)

This expression like (32) contains no the singularities that allows one to derive a hamil-
tonian without anomalous expressions (1) in the rotational part of the kinetic energy
operator. It isthese expressions that are used thereafter. Turning to the modified theo-
rem of motion addition (25) and denoting

dR™ = dF* — dd x 7, (34)
we obtain

dFf = dRe + d& x 7* +dR",  dr7® = dR? + (d& x 77)" + dR™,  (35)
t=212...,N; a=x,y,2.

Thefinal modified configuration (24) is
{O;,?}m} {Of,r +da)xr +dR }
Rewriting (34) as
dR™ =dr*™* — (dCDﬂr”’ — dCDVrtﬂ),

and taking into consideration (33) and the second equality from (19) we have after the
transformation

o T _ Tﬁ@ B _ T hy na
drR* _Z{Z(Sn r Iyr’7 r”lﬁr'”’>C

k :Z( p M r”“)C"ﬂ+Z( r"“) ;(”’}dg", (36)

t=212...,N,a =x,y,z; (a, B8, y) isacyclic permutation of (x, y, z). One can
see that dR™ is a function of the internal variables d&* (k = 1,2,...,3N — 6), and
comparison of (35) with (18) leads to

dR™ = ZB dek. (37)
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Correlating (36) with (37) and taking into consideration the fact that d&* areindependent,
we have

m m
BTY — 8‘( _ rt,B _’Irnﬂ —p _77’,77)/ Cﬂa
¢ ;< ! I, Ig ¢

+ Z(f”"?r"“)czﬂ + Z("Z—ﬂ)ck (38)
n Y n

k=12,...,3N—-6;1=1,2,...,N;a =x,y,z, (o, B, y) isacyclic permutation of
(x, y, z). Now the modified theorem of motion addition (35) has the form

diﬂ:a=ng+ZZSQ,3ydCT)ﬁFTV+ZB,f“d$k, t=212...,N; a=x,y,2.
B v k

(39)

6. Coefficients of transformations and conditions being satisfied by them

The coefficients of transformations (17) are found from definitions both (14), (32)
Ra My o . o 1 Ty
Al =70 M= D omy A= o > aypr (40)
n 14

and definition of d&* as adifferential of afunction &/ = £/(r,”), i.e,

Al = 2

e’

(41)
Two types of transformation coefficients (18) are evaluated through comparing with (39)

By =38 Bii=D_cusr™, (42)
Y

and another one iswritten similarly to (41)

™o — ar;a
k ask *

But it isimpossible to use the latter equality for determination of B*, because depen-
dence of r[* on £k is unknown. Therefore, we use the fact that the laboratory variables
(15) are independent and the well-known formula for derivatives [17]

orze ori« ORY arie 3 grie ygk
3P =GR 3 T 0 g T A
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If one replaces the derivatives with corresponding transformation coefficients (17), (18)
in the right side and compares newly obtained equality with (15), then the following
equation takes place

R w
ZBI?;AWSV +ZB$AW2; +ZBIEO{AI:W :8;8%‘. (43)
1 v k
After substituting (40) and (42) in this equation we have aformula which determines the
third sum in the left side. It is convenient to rewrite it as two equalities.

o if in(43) « = B then

76,08 TY Y
ta Ak r m,7 rrr r’r .
ZBk A '7 ﬁ _mn[ IV + 1/3 }7 (44)
o if in(43) a # B then
. t,Brnoz
DBl ALy =my——. (45)
k Y

In (43), (45) («, B, ) can be considered as the cyclic permutation (x, y, z), though it is
possible to use conditionsa # 8, 8 # v,y # o, «, B,y = x, y, z inthiscase.
Let usintroduce

K=N"m Py Al AL, =D m AL AL, (46)
T o T
Gu=Y m.y BB =Y m,Bf - B. (47)
n o n

Itis clear that G/* = G¥, G;; = Gy. Using (44), (45) one can show that (46), (47)
satisfy the relationships

> GG =6 j,l=1,2,...,3N —6, (48)

k

B =m ™Y GuAly; n=12... N a=xy.z (49)
k

Aia:thGﬂ‘B,f“; =12 ....,N;a=x,y,z2. (50)

k

The equality (48) shows that the values (46), (47) are reciprocal; (49), (50) allow one to
represent B asfunctions of A, and vice versa. Theway of determination of B} from
(18) isasfollows:

— if AJ, areknown from (41), then G/* are found from (46);

— (48) defines G jy;

— in accordance with (49) B, are determined,
— (50) enables one to check precision of determination of B}”.

na
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Thus determination of coefficients transformations (17), (18) is completed. But
the coefficients C{* (the second equality in (19)) are not determined yet. To solve this
problem the equalities (38) which for every fixed k = 1,2, ..., 3N — 6 are convenient
to writein the form

My 2™y 2 x My px y
Z(é; — ™ I—Zr"} —r 71—1”7Z>C,17 + (r”l—r" )C,’g‘

n J ¢

+Z< r"x>CZZ—B,fx, t=12...,N;
(e e 35y e e
I k

n 4

+Z(rrz?rﬂy>c;zz:3;y’ t=12,...,N;

n X

m m
—l—E (5’—r”—nr""—rT"'—nr”"')C"Z:B”, t=12....,N
m I, I, k k

are used. By corrélating the system coefficients with (44), (45) we obtain thefinal system
of equalities for determination of C* by means of the coefficients of transformations

(17), (18)

Z(Z B Al + %)c}jx + Z(Z B;XA{;})c,'jy + Z(Z Bij£Z> Cl* = Bf*
i " i U J

t=12...,N;
Z( ”A{7x>C "oy Z(Z B Al + )c,;D + Z(Z BY A ,u) =B,
—~\~
T = 1 2.....N: (51)

\_/

(Z BY*Al,

nx i ny / m?] nz __
o+ (X aray Jer + (X Bag+ G er = a7
n J n J

9’

=

, ,...,

forevery fixedk =1, 2, ..., 3N — 6. Methods of solving such systems of equations can
be found in [18,19]. In conclusion of this section we write out additional relationships
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(omitting proof) wherein the coefficients of transformations (17), (18) are included. In
so doing the starting point is (16) as well.

> Al=0, ie, Y Al =0,
S x ) =0, ie. 3 xA) =0
imtég =0, ie, imtB;“ =0,
S x B =0, e Y m( x B =0
S AL B = Y AL B .

t -

T

(52)

There are equalities, part of them was obtained in the previous sections:
dR* =Y "Bids*, Y m.dR"=0, ) m.(F" xdR") =0,
k T T
dFT =) Cragt, > m.df =0, Y m.Cf =0, (53)
k T T
Y AL Ci =4
It should be noted that the next to last equality in (53) allows one to omit the addend

m. /M in parentheses of the equation (51). This enables us to rewrite these equations in
acompact form

ZZ(ZB;“A{;V>CZV=B,§“, t=12...,N, a=x,y,z; (54)
novy J

foreveryk=1,2,...,3N — 6.

7. Operatorsof thekinetic energy in Cartesian and generalized coordinates

Let us introduce projections of radius vectors of the particles in the laboratory
system 7f (4), (5) on these axes (3) (the first expression)

™ o__ 2T Tty =t 7 2T 7
Tasw =Ty " las Fee =Ty " Jxs I’**—I’*-k*. (55)

These projections are different from those of these vectors on axes of the moving sys-
tem (3) (the second expression)

P =0, D= f, =ik, (56)

which are used (6) in the first part of the paper.
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In the laboratory axes the kinetic energy operator acting on an absolute scalar — a
wavefunction i — has the form

ry=-1 Ay Ly (57)
= —— m .
2 &~ T &~ origory

By analogy with (55), (56) mass-weighted Cartesian coordinates are introduced

,0** = mY%r . Iy = mY?rIx e,
,0* 1/2 ‘( = ml/Zrtx atc.

x 0

(59)

Then (57) is

h? o 0
A DI Dy vl )

When the common factor (—A2/2) is not considered then the rest of (59) is multiparticle
Laplacian — the sum of three-dimensional operators

a 0
apId dpr¢

t=12...,N,

acting on v». Aswas shown in [20, chapter 1], the form of Laplacian is invariant with
respect to transition from one Cartesian coordinate system to another, (i.e., from thefirst
system in (3) to the second one) since

3

1 9 [ hihoh3 0
divgrady = V2y = 1hahs 0V ,
h1h2h3 84-)1 h;% aé‘n
all Lamé coefficients 1, = 1. Therefore, (59) can be rewritten as the multiparticle

Laplacian acting on the absolute scalar ¥,

hZTw ZZ 8pra 8pra _ZZZZ T 0‘3 1’068 U,Bw (60)

which is expressed through the mass-weighted laboratory variables (58). On the other
hand, this operator can be written by using generalized coordinates {x?}3" likein [16],

2
VA = gPV, VoY =gV, wfg’”( Craly %>

ax* OxPoxs PS dxh
1 9 oy
— ps
NEET (g V'g'axs)’ o

where V, — covariant derivative, the summation being taken over recurring indices. In
applications the last expression is often used, but we will use next to the last. In this
formula g”* isthe contravariant metric (fundamental) tensor [14] which isinverse to the
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covariant one g ; Ff,s — coefficients of affine connectedness [14]. T, = 0 for the mass-
weighted laboratory variables relating to Cartesian axes. For the molecular generalized
variables including non-holonomic ones these coefficients have the form [14]

h
[ = {ps} — Q0+ gpu8™ Qi + g8 Q. (62)

Here, in addition to the fundamental tensors, { [f’ } — Christoffel symbol, Q" i —an object
of anholonomity. For our problem it is necessary to substitute all variables from {x?}3¥
for those used in the sections 2-6, with additional substitution the laboratory variables
for the mass-weighted ones (58). In the process of transformation equations (17), (18)
have the form

dRoz Z Z —1/2ARa ;/3’ Z Z —1/2Awa d r/fi

d/ = Z Z (m72Al,) (3
dpr® = Z( Y2Br)dRE + Z mY?BIaYda + ) " (mY?Bi)dg". (64)
B k
8. Maetrictensors
By using (60), (61), i.e.,
2 3%y Ay
Ty =P ——  _h T 65
h? V=g (Bxl’axs bs 8xh>’ €9
the summation being taken over recurring indices p,s,t =1,2,...,3N.

Now one determines the metric tensors expressed in the laboratory and the mole-
cular variables. Aswas mentioned above I'),. = O for the laboratory variables referring
to the Cartesian axes and comparison of (60) and (65) gives the following relations for
the mass-weighted variables

87 (0:) = 87" (py) = 818F = gz (ps) = gps(04). (66)

Hereevery taornB (t,n=1,2,...,N;a, B = x, y, z) denotes one tensor index which
has 3N values. If one uses usua Cartesian coordinates r[“ instead of mass-weighted
ones it can be shown that

g (ry) = gw"ﬂ(r ) =m; 18188, (67)

gps(r*) - gtanﬁ(r*) =mq 8"8:3
take place (this follows from (58)). When passing from the variables {x?}3" to {x?'}3V
the metric tensors are transformed as

oo x? axY ox? d9x*

p's’ __ ps _
- k] g sl —
b BXP ox?s

s 68
dxP 9x* x> &P (68)
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(the summation is meant). If the metric tensors of our problem written in the labora
tory (mass-weighted) variables are represented in (66), then (63), (64) are used to make
transformation (68). If the form of the metric tensors expressed in the laboratory non-
weighted variables is (67), then (17), (18) are exploited. In both cases the expressions
of the metric tensors (after some transformations with the use (16), (52)) are identical.
Namely, for g,/ we have

— the components of trandational variables

Ry = Mbup, M=) m.,

T

— the ones of rotational variables
T 2 o 2
Sawiap = labap. Tu =D me[(r)" = ()],
T
— the ones of internal variables
gk =D me Y BB =) m B} B, (69)
T o T
— the ones of variables of mixed types
8Rawp = 8Rak = 8auk = 0.
In asimilar manner the components of g”"* are as follows:
g@@ — M*léaﬂ’
g@@ — Ia—lgaﬁ’
gt= m Y Al AL =) m AL AL (70)
T o

T

gi@@ =g§&k — g®k —

In (69), (70) 8.5 = 8“” = &% isKronecker deltaand gjx = G jx, (47), g/* = G/*, (46).
It is evident that matrices of the fundamental tensors written in the laboratory variables
have the form presented in tables 1 and 2.

9. Expression of Laplacian in molecular non-holonomic variables

9.1. General transformation

Substituting (62) in (65) one obtains

2 %y h ) oy
— Z T = oP* _ oPs
h? V=g dxPx* {ps } dx"
D . alﬁ D, . alﬁ ). . 8‘#
+g1SQP};W - g”gpvgh”QS;W - g”gsvghuszpl;w (71)
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Table1
Matrix of the fundamental tensor g5 (ablank cell means zero).
dR da @ dg/
M
dRY M
M
Ix
do ® I,
I

811 812 813 814

g21 | 822 | 823 | 824
dg/ 831 | 832 | 833 | &34
841 | 842 | 843 | 844

Table 2
Matrix of the fundamental tensor g”* (ablank cell means zero).
dR¥ dw @ deJ
m-1
dR¢ M1
m-1
it
~ -1
do® Iy
It

11 12 13 14

21 22 24

de/ 32

41 42

oe [0 |00 |00
. w
=

oe [0 |00 |00

oe [0 |00 |00
w
W

oe [0 |00 |00
. w
X

(the summation is taken over al recurring indices). Taking into account that g”* = g7
and Q) = —Q;” one has

sp

oy

sO-h
gp QPSW = 0
Changing index p to s and s to p in the fourth addend we obtain
DS . 810 sp hu - 810 DS hu - 810
_gllgpv huQs;m =8 IgSU pltim = _gl sv pltim’
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i.e., the fourth and the fifth addends are equal. Since
gpsgsv = 857
then (71) is
2 0%y oY LW
——T — oPS _ oDs 2 hu _. 72
h? V=g oxroxs  ° { }Bxh P xh (72)

In accordance with [14] we have expressions for Christoffel symbols

h 1
{PS} - éght(apgst + 958 pr — 918ps) (73)

and those for objects of anholonomity

Q= AL ALY, AL (74)

ps

It should be noted that non-holonomic components [14] and derivatives with respect to
them are

(do) = Abde”, 9, =A%, (h,p=12...,3N).
In (74) the operation of alternation is
I Al = ;(aAAﬁ — 9,A}).
Aswas mentioned above, the summation is taken over al recurring indices from 1

to 3N. In what follows we use the summation in an explicit form because it is hecessary
to distinguish among trangdlation, rotation and internal variables:

3N 3N-6
Y= Z( )+ Z( )+Z( (75)
p=1

(a= xxz) (a= Xyz)

Let us consider every addend in (72).

9.2. The second addend in (72)

Thisaddend is

3N 3N
SHND LS
h
p=1s=1 dx
3N 3N 3N 3N

=__Zzgpszzg (8pgst+8sgpt 3,gps) v/ (76)

p=1s=1 h=1 t=1
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The use of explicit form of the matrices (tables 1 and 2) symplifies the work with nu-
merous sums, while going to the molecular variables in accordance with (75), the right
side of (76) isrepresented as

3N 3N
ZZ AR

p=1s=
3N 3N

oo 81#
Z Rake Zzght(aRagRat"‘aRagRaz 8thaRa)axh

h=1t=1
3N 3N

— = Z oy Z Zght(awagwat + awagwat - atgwawot) 8¢

h=1 t=1
3N63N6 3N 3N

2 Z DY M8k + g — 8zg,k)8¢h

jlkl h=1 =1

In parentheses of the first addend only those of gz, (see table 1) are not equal to
zero for which 1 = Ra, g7 = M = const. Therefore, all derivatives are equal to
zero and the first addend is also zero. Similarly in parentheses of the second addend
only gewaa are not zero, gzwaa = Ilo, the moments of inertia depending only on the
interna variables £/. If one takes into consideration that, in accordance with table 1,
8Rw; = 8auk = Othen weobtain

_3ZN32N psZ{ }3xh

p=1s=1
3N-63N—-6
==Yyt f"al—
Z 2 2 &g
j=1 k=1

3N 63N—-6 3N-63N—-6

-5 Z DY 8058 + g — digin) a;ﬁl

]lkl i=1 [=1

To simplify these expressions it is necessary to use the relations among variables ob-
tained in the sections 2—6 of this work. In that case the form of the second addend in

(72) is o an
EEeE
p=1s=

- T j TU AT oY
RPN Nt il
- : a2V
DOBHDITONULH
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where AL _ = 92! J(@rrar)”).
9.3. Thethird addend in (72) and sum of the second and the third addends

In the third addend non-zero components of the object of anholonomity are ob-
tained from (74) together with (17), (18)

QP_ wajz me(z rﬁB;ﬁ—rmB;a>,
a=x,y,z j=12...,3N—6, (78)

(there is no summation over p and wa in this formula). The other non-zero components
to be used are

Q™ = —th B x BY) thzzeaﬂyB,fﬂB;V,

¥
a=x,Y,2; k,]=1,2...,3N—6. (79)

By taking into account (78), the third addend is

3N 3N 3N

I~ ,W
—2) D) 8"y

h=1 u=1 p=1
3N-63N—-6

— 2 Y Ygamt
i=1 j=1 « 85
3N-63N—-6

- _ Z Zzgul 1Zm (Z TﬁB;'B—VraB;a>g—;bi

i=l j=1 «
3N-6 3N—-6 3N-6 w
— -1 8 ij ptB Ta ij pra
Y SR L) e S e |
i=1l « T B j=1
Comparison of the expression in parentheses and (50) shows that

3N 3N 3N , 13N 6 ' A aw
SOMMILLIE S DD 36 3D 3R

h=1 u=1 p=1

In (72) the sum of the third and the second (77) addends is
_gl’S{ h }% ) h“Q"P%

axh P xh

S[EEE T ()i @
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where Ai,&ﬁ = 02" /(3r™ar)’), in the left side the summation being taken over re-
curring indices from 1 to 3N. The expression in parentheses can be transformed in
accordance with (44), (45), but there is no necessity to make it.

10. Thefirst addend in (72)

Detailed examination of this addend is necessary due to non-zero components of
the object of anholonomity (79), since, in accordance with [13], the following relations
must take place:

3y %y
DEIDER  DENDET

9
Ejﬂmxjw k#j, k j=12..3N-6 (8])

It should be noted that in [13] aswell asin other works on analytical mechanics so-called
three-indices symbols y[’}s are in common use instead of objects of anholonomity. These
symbols satisfy the relation

h _ oo-h
Vps = ZQPS.

Let uswrite out the first addend in (72) expressed in the molecular variables, taking into
consideration the form of the metric tensor from table 2.

s aZw _ -1
8 o M 2:aRaaRa 234*3 TFPL E:E:gﬂasmék (68

In the last term the indices j, k form couples (jk) denoting addends in the sum. Both
indicesrange 1, 2, ..., 3N — 6 independently. Let us define them in the following way:
when j = k let usdenotethem! =1, 2,...,3N — 6; inthe other casesletitbe j < k
for every couple, sothat j = 1,2,...,3N — 7,k =2,3,...,3N — 6. Inso doing in
(82) the last addend is

%y
aszask

—6 3N-63N-7 2 3N-63N-7

g 8%‘135[ Z Z 8$kaé§j + Z Z jkagjask

Relation (81) isrewritten as

&MZ

w
=

l

Il
iN

oy _ o o OV |
0ETQEK - dERYE] + Z ki g’ k> j. (83)




118 A.Ya. Tsaune / Nonrelativistic Hamiltonian in the principal axes

Substituting it in the previous formula we obtain

3N-63N—-6
Jjk
jzl ;g asws’f
3N—6 3N—63N—7 A
1 kj
- Zg 851351 Zj: ;gjaskagj
3N-63N-7
+23 ) ”‘Zﬂk -
k>j j=1 80)
3N-6 v/ 3N—-63N—-7
1
- Z 51351 +2 ; le Ekas;
3N-63N—-7 8¢
+2kz Zlgsz th B} ><B awa'
>j

As Bk X Br = Owhen j = k, the condition to (k > ;) can be changed to (k >
last addend This leads (84) to the expression

3NZGBN26gjk Oy
insk
j=1 k=1 08708
3N—-6 3N-63N-7
%y
— 1 jk
=2 ' ma T2l L m
=1 98708 k>j j=1 BE 85]
3N—-63N—-6 8¢
k
+ZZ th{é ;g] Bf x BY) ]aaa'

(84)

J)inthe

(85)

In the right side of (83) the second addend can be presented as an isolated (the last)
addend in the right sides of (84), (85). This allows one to rewrite (85) in the form

3N-63N—-6

IPIL

j=1 k=1

3N—-63N—-6
ik
=2 2 (8sfask>comm

j=1 k=1

3N G3N6jk aw
—l—ZZ Zm,{z Zg kaB }@’

k>j j=1
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where 3%y /(3&79&%) £ 82y /(9£%9&7) in the left side in accordance with (81), (83) and

029 /(3E7 DEX) comm = %Y/ (DEXIET) gomm IN the right side. In such a manner, (82), i.e.,
thefirst addend in (72), is as follows:

L. L 9y o 9
8" axran = lz aRaaRa ;I‘Ylaaaaaa + ,21 kz g]k<a§faék>
3N-63N—-6 8¢
+2Z th >3 g*(Bf x BY) }80)& (86)

k>j j=1

10.1. Laplacian and Schrodinger equation expressed in the Laboratory variables

Taking into account (80), (86), Laplacian (72) acting on the absolute scalar i can
be written as

5 1 3N-63N—-6 "
_ﬁTw: ZE)RO‘BR“ +Z “ 80)“8(1)“ Z Z : (3$]3$k>comm

=1 k=1

1 3N-63N—6 ) 5
+ZZEZmT|:Z ng thB i|a

k>j j=1

131D 3033 S5 ST IS ST

t=1n=1 « j=1

where A’;a = 02gk/(0rr®9rF). The Schrédinger equation is obtained through multi-
plying both sudes of (87) by (—#?/2) and adding the potential energy function U

hz 1 821// 9 3N-63N—-6 "
_hp 4 J
2| M Xa: JRYORY +Z * 0w aawa Z Z (8518$k)comm

1 k=1

1 3N—63N— " oy

+22,—Zmr[2 Z J¥(Bf x BY) }aaa
o= k>j j=1

3N—-6 3N—-6 mg 8¢

+z[zzzz (z ) H

t=1np=1 a B

+ Uy = Ey. (88)

Let us represent —42 = (—ih)(—ik) and introduce operators

d
P, |h3Ra,

d
|h3&_k,

_ _ik_0 _ .
L(X__Ihaaa (a—X,y,Z),

k=12 ...,3N —6.

(89)
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Then (88) has the form

3N 63N—6
{ZMZPW w+221 LoLo+ > Z > pipe

]lkl

1 3N—-63N—6 3 R
_ihZEZmT[Z Z gjk(B,f X ij,)a:|La

k=) j=1

L ST (e

-I-Utﬁ:Elﬁ, (90)

wherei = /—1. The expression in braces {- - -} is the kinetic energy operator T of the
nonrelativistic N-particle system in the principal central moving axes. It is evident that
the Hamiltonian of this system and the Schrédinger equation (90) are

H=T+U, Hy = Ey.

Restricting oneself to only Coulomb interaction among particles forming amolecule, the
potential energy function is

lecey
, 91
47'[80 ; Z 2 v 1)
in nonrelativistic approximation. Here e, —acharge of tth particle (with an appropriate
sign), r*" — adistance between the tth and the nth particles.
11. Jacobian, volume element, rovibronic equation and the Hamiltonian

It is well known (e.g., [17]) that Jacobi matrix for transition from variables x;
(=12...,n)tofunctions F;(x) (I =1,2,...,m)is

dFy dFy dFy
w5 om
M= ... U (92)
dF, OF, dF,,
8_xl 8_)62 8xn

If m = n then determinant of (92) is Jacobian to be denoted as D = det M. In our
case, we consider x; in (92) to be the molecular variables dR?, dw® (¢ = x,y, z)
dek (k = 1,2,...,3N — 6) whereas the laboratory variables drw‘ (r=12...,N,
Q@ =x,y,2) play the role of F;. By using (18) it can be shown that the Jacobi matrlx
(92) (let it be B) has the form displayed in table 3.

In accordance with (17) the inverse matrix A = B~! isdisplayed in table 4.
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D = det(B) = det(B') = [det(4)] " = [det(4’)] ",

121

(93)

where B’ and A’ are transposes of the matrices B and A, respectively. Properties of
determinants and matrices are used to obtain the following equalities:

Tabl

Matrix B of transition from the molecular variab?l;sedng, dw @, d&* to the laboratory ones drI® (18).
B drY | drRY | dRE | dw* da Y da? dgl dg2 dg3

dr};x 1 rle —rly Bi‘x B%x B%‘x
driy 1 —rlz rle B]l_y ley Béy
dr;? 1 rly —rlr B]l_Z lez B?%Z
dr*zx 1 r —r2y B%" BZZX B%x
a2 1 o 2 | 2 | 52 | g2
drZ 1 r2y —p2x B%Z B%Z Bgz
drfx 1 r3 —r3y B]?_’x ng ng
drfy 1 —r 3 ng_y Bgy Bgy
dr? 1 3y —r3 Bi’z Bgz Bgz

Table 4

Matrix A of transition from the laboratory variables drl® to the molecular onesdR&, dw ¢, dgk (17).

A drl¥ dri Y dr dr2* dr$ Y drZ dr 3 drf Y dr
crg |3 i i

i % % i

dr % % 7,
da* %:llrlz ';'—tlrly —IVZZ & ";_XZ},Zy —IVZ3 3 "11_x3},3y
da Y ’;’—Vlrlz *If:llrlx r;z_vz,,ZZ 7I_n:2r2x n;_vs,,SZ —I_nvl3},3x
A | =mply | ma,Le —m2,2y | m2, 26 =3, 3y | 13,3
N N PO B NN N I
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= [dtmdes)] = [( / Hm )det(B)det( )TZ

n=1

= (ﬁ mg) _1/2[det(31)det 2 _ (Hm )_1/2[det(BlB/)]l/2.

n=1 n=1

The matrix B; results from B table 3 by multiplying every of three rows dr* by m,
(¢ =x,y,z,t=12,...,N). Theproduct B;B’ isthe matrix depicted intable 1, i.e.,

N —-1/2
= (H mi’) [det(g,,)]">.
n=1

In asimilar manner, by using the matrix A from table 4 we obtain

= (e ()] = {(H’" / Hm )det(A)det )T/Z
:(f[lmf)_l/z[det(AlA Ve (Hm >_1/2[det(g1"‘)]‘1/2.

The matrix Az results from A by multiplying every of three columns dr® by m,, n =
1,2,...,N. Theproduct A;A’ coincides with the matrix shown in table 2. Taking into
consideration table 1, table 2, the final expression is

3 1/2
D= ( A]]W 3) D, (94)
Hn:lmn
D = [LELE LE)]*{detfgu®)]}* = [LELE) L&)]*{det g™ )]}
(95)
InD’ all variables depend on £1, £2, ..., £3¥=5 only.
Asafunction of the laboratory variables the volume element is
N
=[[dri* dry dr?
=1
and as that of the molecular variables
N
dV = [D|dR} dRY dR: da * dow ¥ das* | [ o (96)

Let us transform the rotationa part of the volume element for going from the non-
holonomic variablesdo * (o = x, y, z) to differentials dy, do, dy of Euler angles which
are the generaized (Lagrangian) variables. To accomplish this it is necessary to find
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the Jacobi matrix (92) by using (10), dg, df, dx playing the role x;. Jacobian of this

transformation is
—snfcosy sny O
det| sinfdsiny cosy O] =-—sné.
cosd 0 1
Then
do*dw”’ do* = |— sind| dp do dy
and the fina form of (96) is

N
dV = |D|dR dR} RS sind dg d dy [ ] &’ (97)
j=1

L et us denote
R=(R{LRLER), t=(00, 0,  §=(8,...8"0,
for short. Inthis case, (97) is
dvV = |D|dR sinfdcdé and ¥ = ¥ (R, ¢, £). (98)
Scalar product of vectors corresponding v is

W, 1//)=///IDIW(R,C,S)W(R,C,S)dR sing d; d&. (99)
(R) () ®
Asthe normalization condition

W.v) =1 (100)

should be met then taking into account (94) the expression (99) can be rewritten as

= [ [IPT®RcHv®R o dRsnodcds, (o
(R) () (&)
since the fixed multiplier in the right side (94) is included in a normalizing factor in

(101). The same result is obtained for non-normalized functions v in solving the varia-
tional problem based on Rayleigh fraction

(Y, HY)
W, ¥)
or for approximate representation of the Schrodinger equation as a matrix one on a set
of basic functions depending on (R, ¢, §).

The general Schrodinger equation both in coordinate representation (88) and in
operator one (90) has some peculiarities:
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— the coefficient by the operator ) (3/dR%)(9/9R%) does not depend on coordi-
nates,

— the coefficients by the other differential operators, Jacobian (95) and the func-
tion of potential energy U (having form (91) for molecules) do not depend on
coordinates of center of mass RY (« = x, y, z).

Thisleads to the fact that the complete wavefunction can be represented as
V(R, £, §) = Yrans(R)V (S, §)

and mation of center of massis separated. W — a rovibronic wavefunction is a solution
of the Schrodinger equation

K 1 8\11 3N—-63N—-6 W
S b D E | T T e Y|

o k>j j=1

N—6 3N —

3 % (55

3N— N N 3N-6 P

3P BB ST

k=1 Lt=1 a n=1 B j=1 85
YUY =€V, (102)

where £ —an eigenvalue of arovibronic problem. To obtain corresponding Hamiltonian
it is necessary to use (89), that leads to

H=221 lhz W1 ot = ZZg p]pk—thszk—l-U (103)

T k>j j=1
1 N N 3N-6
DD NI I I
=1 o p=1 B j=1

For the rovibronic problem Jacobian has the form (95), the volume element based on
(95) is
3N—6
dViovitron = |D'| sin6 do dpdx [ ] dg”.
j=1
In this paper the use of (102), (103) for solving various problems is not considered.
We only note that if all terms containing # are omitted in (103) then (103) becomes the
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classical expression of rovibronic energy that is consistent with the Bohr correspondence
principle.
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